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- ALG 5 | Calcul matriciel

Lalgebre linéaire, que nous étudierons dans la suite du cours, est née de la théorie
des systemes linéaires. Ces chapitres constituent une introduction aux matrices a
coefficients dans le corps K = R ou C.
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¢ idée de matrice s’est lentement forgée au fil de siecles. Elle est naturellement née de I'étude
des systemes d’équations linéaires, et on en retrouve la trace jusqu’a I’époque babylonienne.
Cardan énonca dans son Ars Magna des regles générales permettant la résolution des sys-

temes d’équations linéaires a deux inconnues.

Dés lors, tous les développements concernant les systemes linéaires, ont tourné autour de la notion
de déterminant. Aprés les travaux de Leibniz, Laplace, Vandermonde et d’autres savants, Gauss in-
troduit le mot déterminant et propose une technique générale de résolution des systémes d’équations
linéaires, la méthode du pivot.

Le premier savant a employer le mot matrice
fut cependant Sylvester en 1850. Ce dernier fit
partager ses découvertes a Cayley qui publia en
1858 son Memoir on the theorie of matrices dans
lequel il énonca le résultat aujourd’hui appelé
théoreme de Cayley-Hamilton (mais qui ne fut
prouvé dans le cas général que par Frobenius
en 1896). Dans cet ouvrage, Arthur Cayley défi-
nit les opérations usuelles sur les matrices (addi-
tion, multiplications interne et externe, passage
a l'inverse) et expose le calcul explicite de I'in-
verse a I’aide du déterminant.

Vandermonde Gauss

Il fallut cependant attendre la premiere moitié du XX¢ siecle pour que la théorie des matrices devienne
un des piliers de I'enseignement des mathématiques, notamment grace aux cours de Camille Jordan
a Paris.

Cayley Sylvester Frobenius Jordan

Depuis I'avénement du calcul numérique et de 'informatique, les systemes linéaires ont connu un
regain d’intérét. Les capacités et la vitesse de calcul ont ouvert la voie a la résolution de systemes li-
néaires de taille gigantesque. Des méthodes de discrétisation fondées sur'idée de linéarisation ont vu
le jour pour la résolution approchée d’équations différentielles et d’équations aux dérivées partielles.
Nous évoquerons ces aspects dans la derniere section de ce cours, mais seulement a titre culturel.
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1. Calcul matriciel

Dans tout ce chapitre, K désigne R ou C. Dans ce cadre, les éléments de KK sont traditionnellement
qualifiés de « scalaires ».

Définition 5.0. Vocabulaire sur les matrices

Soit p et n dans IN*.

=> On appelle matrice a n ligne(s) et p colonne(s) a coefficient(s) dans K toute famille d’éléments
de KK indexée par le produit cartésien [1, n] x [1, p].

= Une matrice est dite carrée si elle compte autant de ligne(s) que de colonne(s). Sa taille est alors
par définition son nombre de ligne(s).

= Lensemble de ces matrices KII"1*I1Pl est noté plus simplement .7 n,p (IK).

= Lensemble ./}, ,(IK) des matrices carrées de taille n est noté ., (K).

= Pour A = (a; ;) 1132,; € Mn,pK) et (i,) € [1,n] x [1, p], le nombre a; ; est appelé coefficient

d’indices (i, j) de A (on peut aussi dire de position (i, j)).

=> La matrice de ./, ,(IK) dont tous les coefficients sont nuls est appelée matrice nulle. On la note
0p,p ou plus simplement 0, s'il n'y pas d’ambiguité sur les valeurs n et p.

D’une maniere moins formelle, une ma-
trice A a n lignes et p colonnes a coeffi- Colonne j
cients dans K est la donnée de np élé-

) . A 173 a
ments de KK répartis dans un tableau a n L1 Lp
lignes et p colonnes. § ;
_ ) : 4i,j) Ligne i
Par convention, A; ; est le coefficient sur ' — 8
’ an,l ............. an,p

laligne i et la colonne j de la matrice A.

Notation des coefficients d’'une matrice

Afin de mener des démonstrations et des calculs efficacement, il est conseillé de noter a; j, A; ;,
(A); j ou encore [A]; ;, les coefficients d’'une matrice A.

Pour A:= (a; ;) 1<i<n € M n,p(K) et (i, j) € [1,n] x [1, p], les matrices

1<j<p
(11']'
: et ( g aip ) sont respectivement appelées j-éme colonne et i-éme ligne de A
Qnp,j
Lorsque n = p, on appelle diagonale de A, la n-liste suivante : L1 e a1,n

(al,lr---’an,n) ar:ll .....

Dans le cadre du calcul matriciel, le symbole de Kronecker sera tres largement utilisé :
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Définition 5.1. Symbole de Kronecker

On note & la famille indexée par IN? a valeurs dans {0, 1} définie par

1 sii=j

Vi, ) eN?, 8y = {0 sii#j

1.1. Sommes et combinaisons linéaires

Définition 5.2. Somme, produit par un scalaire

On considere deux matrices A := (a;, j) 1<i<n €t B:= (b;,j) 1<i<n ainsi qu'un scalaire A.
1<j<p 1<j<p

=> La matrice somme de A et B est la matrice, notée A + B, définie par A+B = (a;,j + b;,j) 1<i<n .
1<j<sp

=> On. note AA la matrice définie par AA = (Aa;, ;) 1<i<n -
1<j<sp

En particulier, avec les notations de la définition et des scalaires A, . :

)\al,l 'f‘}lbl,l .............. }\al,p"‘ubl,p

AA+puB =

Napy+ Wby oo )\an,p + I-lbn,p

Proposition 5.2. Regles de calculs
Soit n et p dans IN*. Ces deux opérations vérifient les propriétés suivantes :
a. Elément neutre : VA€ MnppK) , A+0=0+A=A.
b. Associativité : V(A,B, C)///n,p(]K)3 , A+B)+C=A+ (B+C);
c. Commutativité : V(A,B).#,, ,(K)* , A+B =B+A;
d. Distributivité : V(A,B, C)///n,p(]K)3 , VAeK , A(A+B) = AA+AB.

Ces regles de calcul, analogues a celles vérifiées par les nombres complexes, nous permettent d’utili-
ser le symbole X dans le cadre des matrices avec une généralisation (par récurrence sur le nombre de
matrices) des regles précédentes :

n n n
Y (AA;+pB) =AY A;+p) B;
i=1 i=1 i=1

pour des matrices Ay, ..., Ay, By, ..., B, dans .#), ,(K) et des scalaires A, p.
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Définition 5.3. Base canonique de ./#, ,(IK)
Soit (n, p) e N* x IN*.

=> Pour (i, j) € [1,n] x [1, p], on note E; ; la matrice de .#, , (IK) dont tous les coefficients sont nuls,
sauf celui d’indices (i, j).
=> Lafamille (E; ;) 1<i<» est appelée base canonique de .#/}, ,, (KK).
NN
Attention, la notation E; ; est incomplete puisqu’elle ne fait pas référence au couple (7, p).

X Par exemple, pour n=p=2,0na

Eiq = 10 , Bip = 01 , BEoq = 007 et Eoxp = 00
00 00 10 01

Ainsi, pour A = (a;,j)1<i,j<2 € A>(K), ona

a1 a

LL @2 =g 10 +ap, 01 +az, 00 +apo 00
azy dzp 00 00 10 01

n p
X Plus généralement, pour A = (a; j) 1<i<n € Mnp(K),onaA =Y > a;;E;;.

I<jsp i=1j=1

A=

1.2. Produit matriciel

Définition 5.4. Produit matriciel

Soit A:=(a; ) 1Sisn une matrice de .#/}, ,(K) et B:= (b;,j) 1<i<p une matrice de .#, ,, (K).
INA 1<j<m

Le produit de A par B est la matrice, notée AB, de .#,, ,,(IK) dont le coefficient d’indices (i, j) est:

p
a; kb, j
k=1
Colonne j Le produit AB n’est défini que si le
nombre de colonnes de A est égal au
by by jpe b Lm | nombre de lignes de B.
p : : :
Ci,j = Z a; k by, i : : En cas d’existence, AB hérite de A son
k=1 : : : nombre de ligne(s) et de B son nombre
Dp - Dy e bim | decolonne(s).

On peut « poser » le produit AB en posi-

AL ovveennnnnnn aip tionnant A et B comme ci-contre et en
; remplissant coefficient par coefficient le
: : tableau.
Ligne ¢ SR — —(Ci.j) On calcule c;; a partir de « la ligne de
Apl oo ap gauche et de « la colonne du dessus ».
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X Par exemple,

ablll -1|_-]|a+2b —a+b

cd]l2 1 c+2d —-c+d
I faut connaitre les relations suivantes, qui se démontrent (voire se retrouvent) facilement « en po-
sant » les produits :

Proposition 5.4. Produits canoniques

On note (E; j)1<i j<n la base canonique de M7y(K). Pour tout (i, j) et (k,€) dans [1,n]3, on a
E; jExe = 8 «E; . Cette formule se généralise facilement a un produit de matrices de tailles res-
pectives (n, p) et (p, m).

Le produit matriciel n’est pas commutatif et admet des diviseurs de zéros, c’est-a-dire qu’il existe des
matrices non nulles dont le produit est nul :

LOJOI|=[01) e [O0OL1)fO0O1)=p
00J{0O 00 00J100
Revenons a I'exemple, ci-dessus. Nous remarquons que
a+2b|_|a b|[1] ¢ |—a+tb|=(a b]|| -1
c+2d c dj\2 —c+d c d 1

Le produit AB peut donc aussi se calculer colonne par colonne (au lieu de la définition coefficient par
coefficient) en calculant les produits ABy, ..., AB,, ou By, ..., B;,; désignent les colonnes de B.

Proposition 5.5. Colonne j

Soit (A, B) € Ay, p(K) x A p,m(K). Les colonnes de AB sont ABy,
..., AB;,, ou By, ..., B;, sont celles de B.

De méme en désignant par A’, ..., A’ les lignes de A, les lignes de
ABsontA’B, ..., A},B.

L'expression du produit matriciel au moyen des colonnes aura une
grande importance en théorie et en pratique dans '’ensemble du
cours d’Algebre linéaire.

A

Le produit AX, avec A € .#,,(KK) et X une colonne de taille p, s'interpréte comme une combinaison
linéaire des colonnes de A dont les coefficients sont ceux de X :

HARERIE R

Al p
' = Z AjA; (combinaison linéaires des colonnes Ay, ..., Ap)
j=1

Plus généralement :

Ap

LLG ¥ HX6 6
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n
( Hp e Wy ) : | = Zi H;A; (combinaison linéaires des lignes A}, ..., A))
1=

En particulier, il est important de savoir que Vj e [1,pl et Vie [1,n] :

RE 9 | i N
Y (1) / (0._} 0)

Définition 5.6. Matrice identité de taille p

Soit pe IN*. Onnote I, := (8;,j), ; ;<,, (matrice identité de taille p).

Proposition 5.7. Regles de calculs (/5.1)
Soit n, m, p et g dans IN*.
a. Flément neutre : YA€ .Z, ,(K), 1,A = Aet Al,, = A.
b. Associativité : V(A,B,C) € 4, ;,,(K) x .//mp(]K) X ///p,q(]K) , A(BC) = (AB)C;
c. Distributivité :

V(A,B,C,D) € My m(K)? x M, p(K)?, AA+PB)C = A(AC)+u(BC) , AAC+UD) = A(AC)+u(AD)

1.3. Puissances d’'une matrice carrée
L'associativité du produit matriciel permet de définir les puissances d’'une matrice carrée :

Définition 5.8. Puissances d’une matrice carrée (/5.2)

Soit p € N*. Pour tout n € N* etME///,,(]K), on pose M := I, et M" =M x --- x M.
n termes

X Calculons les puissances de la matrice U := (1)1<;, j<p. On obtient facilement par la définition que
U? = pU. Onaalors U® = U? x U = pU? = p?U et, par une récurrence facile, U = p"~1U pour tout
entier naturel 7 nonnul et U% =1 p-

On vérifie facilement que les propriétés usuelles sur C restent valables dans ce cadre, et se démontrent
essentiellement par récurrence en utilisant ’associativité mentionnée ci-dessus :

(An)m =AM

et ,siAB =BA, VnelN, (AB)"” = A"B"
AnAm — An+m

V(A,B) € #,(K)?, ¥(n,m) e N?, {

On notera la condition nécessaire AB = BA pour la derniéere propriété. Par exemple, on a

2
(E12E21)” =Ef, =Ei; et E{,E5, =0x0=0

LLG ¥ HX6 7
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Définition 5.9. Commutation

Soit p € N*. On dit que des éléments A et B de .#, (KK) commutent si AB = BA.

Considérons deux matrices A et B de .# p(K). Si AB # BA, alors
(A+B) x (A+B) = A>+ AB+BA +B* # A* + 2AB + B®
(A+B) x (A—B) = A~ AB+BA +B* # A* - B
Mais, en cas de commutation, les formules de factorisation et du binome (démontrées pour les
nombres complexes dans ALG 3) sont applicables.
Proposition 5.10. Fomules du binome et de factorisation

Soit p € IN*, A et B deux matrices de .#, () qui commutent.

n

a. YnelN, (A+B)"=)_
k=0

n

n—1
LA b. VneN*, A" -B"=(A-B) ) A" "FBF,

k=0

La formule du bin6me permet de calculer les puissances d’'une matrice s’écrivant comme somme de
deux matrices qui commutent .

X Calculons par exemple les puissances de la matrice A := (?1) i ?)
OnaA=I3+NouN := (8(1)(1)).CommeN2 = (88(1)),0naN3
000 000

De plus, I,N = NI,, = N donc on peut appliquer la formule du binome :

nn-1)

" (n n n n nn-1 I n ———
A' = (+N)" = Y | INF= [CINO+ | N+ N2:13+nN+¥N2: 2
k:() k 0 1 2 O 1 n
00 1

X Cette technique se généralise bien a A= Al,, + N ou N est une matrice nilpotente.

Définition 5.11. Nilpotence

Soit p € N*. On dit qu'un élément N de .#, () est nilpotent il existe n € IN tel que N" = 0.

La formule de factorisation admet un cas particulier important, celui des sommes géométriques. En
I’absence d’inversibilité, la formule des sommes géométriques s’écrit sans passage a l'inverse.

Sommes géométriques matricielles

n—1
Pour A€ #m(K) etne N*, ona (A1) Y AF = A"~ 1,
k=0

1. Mais cela n’a bien-str d’intérét que si les puissances de ces deux matrices sont simples a calculer.

LLG ¥ HX6 8
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1.4. Matrices carrées triangulaires

Les matrices diagonales et triangulaires jouent un role important dans la théorie des Matrices.

Définition 5.12. Matrices diagonales, triangulaires

Soit n € IN*. On considére une matrice carrée A = (a; j)1<i, j<n-

=> On dit que A est une matrice diagonale lorsque a; ; = 0 pour tout (i, j) € [1, nl?telque i # j.

= On dit que A est une matrice triangulaire supérieure lorsque V (i, j) € [1,n]?, i>j = a;, j=0.
= On dit que A est une matrice triangulaire inférieure lorsque V (i, j) € [1, nj?, j>i = a;;j=0.

On note respectivement 7, (K), 7, (K) et .7, (K) les ensembles des matrices diagonales, triangu-
laires supérieures et triangulaires inférieures. On a bien-str Z,(K) = .7, (K)n .7, (K).

1-11 100 . . . Lo < po s
X Par exemple, (8 % %) et (g % g) sont respectivement trlangulalres superieure et inférieure.

Proposition 5.13. Stabilité de .7, () par les opérations matricielles

Soit n € N*. Lensemble .7, (KK) est stable par combinaison linéaire et par produit :
V(A,B) € 7 (K)?, VA, p) e K?, AA+uBe .7, (K) et ABe .7, (KK)

Pour (A,B) e .7, (K)? et i€ [1,n], (AB);; = A; ;B; ;. Le méme résultat vaut pour T, (K) et 7,(K).

1.5. Transposition

Définition 5.14. Matrice transposée

Pour toute matrice A = (a; ;) i<i<n de .#p,,(K), on note AT := (aji)i<i<n. Cest un élément de
1<j<p 1<j<p
Mpn(K).

C’est la matrice obtenue « en mettant en colonne » les lignes de A (ou inversement d’ailleurs), elle est
appelée transposée de A :

T T
i(l)g 11(2/(3](0 ;(1)2 1230
3490 :0140’342 =|0140
531210 5320

000 0/1010

Dans le cas d'une matrice carrée A, la matrice AT s’obtient en effectuant la symétrie par rapport a la
diagonale de A :

T a b c
a c adg
def =l b e h par la symétrie d e f
i c f i
g h i
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Proposition 5.14. Propriétés de la transposition

a. Pour toute matrice A, ona (A")" = A.

b. Pour A= (a; ;) 1<i<n €t B=(b; j)i<i<n dans .#y ,(K) et A, p des scalaires, on a
1<j<p 1<j=p

(M +pB)" = AAT +uB" (linéarité de la transposition)

c. Pour A = (a; j) 1<i<n dans .4, ,(K) et B= (b;,}) 1<i<p dans ., ,(K),ona (AB)T =BTAT.

1<j<p 1<j<m

Définition 5.15. Matrices symétriques ou antisymétriques
Soit A une matrice carrée.

= On dit que A est symétriquesiA=A"; = On dit que A est antisymétriquesi A= —AT.

On note .%,,(KK) (resp. <7, (IK)) I'ensemble des matrices symétriques (resp. antisymétriques) de
AMn(K).

. 1 -11 012 . I . -
X Par exemple, les matrices (—1 12 2) et (— 10 8) sont respectivement symétrique et antisymétrique.
X Plus généralement, la diagonale d'une matrice antisymétrique A est toujours nulle car la condition

AT =-A impose A; ; = —A; ; pour tout indice i.

1.6. Trace d’'une matrice

Définition 5.16. Trace d’une matrice carrée

n
Pour toute matrice carrée A = (a; ;) de .#,(IK), on note tr(A) = Z ai;.
k=1

Ce nombre est appelé trace de la matrice A.

X Onatr(gg):cHd.

X Par exemple, pour tout n dans IN*, on a trI,, = n. La trace de la matrice nulle est nulle quelque soit
sa taille.

Proposition 5.16. Propriétés de la trace (/5.3 )

Soit n € IN*.
a. La trace est linéaire : pour tous A et B dans ., (IK) et A € K, tr(A+ AB) = tr(A) + A tr(B).

b. Pour tous A et B dans ., (IK), tr (AB) = tr(BA).
c. Pour tout A € #,(K), tr(A) = tr (AT).

En particulier, tr(AA) = A tr(A) pour tout (A, A) € K x ., (K).
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2. Systemes linéaires

Le systéme linéaire suivant d’inconnues x, y, z réelles peut se reformuler au
moyen du calcul matriciel :

x +ty—-z =1 11 -1)\[=x 1
2x —y+3z=2 2 -1 3 Y1712
x +22=0 10 2 ||z 0

2.1. Vocabulaire sur les systémes linéaires

Définition 5.17. Systeme linéaire a n équations et p inconnues

Soit n et p dans IN*.

=> On appelle systéme linéaire a n équation(s) et p inconnue(s), toute équation s’écrivant sous la
forme AX=Bou A€ .#, ,(K) et Be ./, (K) sont des données et X € .#,1 (IK) est 'inconnue.

= La matrice A est appelée matrice du systeme linéaire.
= Le systeme linéaire d’équation AX = 0 est appelé systeme linéaire homogene associé a AX = B.
= L'ensemble des solutions du systeme AX = B est par définition {X /4 p1(K); AX=B }

= Un systeme linéaire est dit compatible si ’ensemble de ses solutions est non vide.

On remarque que si X est une solution du systéme & : AX = B, alors pour tout X € ./ p 1K) :

X estsolutionde . < AX =B
«— AX = AX
— AX-X)=0

< X -X est solution du systtme homogéne & associé a &

Proposition 5.17. Structure de 'ensemble des solutions d’'un systéme linéaire

Soit A€ .y, (K) et Be .#,,(IK). Considérons le systeme linéaire & : AX = B.

a. Le systeme & est compatible si et seulement si B est combinaison linéaire des colonnes de A,
ie. :

p
A(x1,...,Xxp) € KP,B = Z XiA; OUAy,...,Apsontlescolonnes de A
i=1

b. Si & est compatible, alors 'ensemble de ses solutions est
= {X+XH;XH € y()}

oi1 X désigne une solution particuliere de & et .%, I'ensemble des solutions du systeme linéaire
homogene & : AX =0 associé a &.

LLG € HX6 11
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2.2. Algorithme du pivot

La résolution d'un systeme linéaire a deux équations et deux inconnues peut étre effectuée au moyen

de substitutions :

X+ 1 1-x 1-x

2x-y =2 2x—-y =2 2x—(1-x) =2 X
Cette technique se généralise mal a un nombre d’inconnues et d’équations supérieures. La résolu-
tion d’'un systeme linéaire général s’effectue facilement au moyen de I'algorithme du pivot de Gauss

que nous allons décrire dans la suite de ce paragraphe. Celui-ci nécessite I'introduction d’opérations
usuelles sur les lignes d'un systeme linéaire.

0
1

<
Il

Notation 5.18. Opérations élémentaires sur les lignes

Considérons une matrice A € .#/, , (IK) ou un systéme linéaire a n lignes et p colonnes dont on note
Ly,...,Ly les lignes.

= Le fait permuter deux lignes L; et Lj se note L; < L;.
= Le fait de multiplier L; par A # 0 se note L; — AL;.

= Le fait d’'ajouter A-L;j aL;, pour i # j, se note L; — L; + AL;.

Comme chacune de ses opérations est réversible, on en déduit le résultat suivant :

Opérations élémentaires sur les lignes un systeme linéaire

Effectuer un nombre fini d’opérations élémentaires successives sur un systeme linéaire n'en change
pas I’ensemble des solutions.

L'algorithme du pivot permet d’aboutir, a l'aide d’opérations élémentaires sur les lignes, a un systeme
linéaire échelonné.

X Considérons par exemple le systeme

2x+ y+ z=1
X+2y+ z=2
X+ y+2z=3
La premiere étape consiste a choisir 'une des trois équations qui va nous servir a supprimer l'in-

connue x dans les autres. Il faut pour cela trouver une équation ou le coefficient de x est non nul
et le plus simple possible pour la suite des calculs. Le choix d'un coefficient égal a 1 est optimal :

X + y+2z=3 X +y+2z= 3
2x+ y+ z=1 <= —y—-3z=-5 parLp —L,-2L;etL3 —L3—-L;
X+2y+ z=2 y— z=-1

On ne touche plus désormais a la premiere ligne et on recommence en considérant le systeme
formé par des deux dernieres lignes, i.e. on utilise le terme en y de la seconde équation pour sup-
primer cette inconnue de la troisieme équation :

LLG € HX6 12



2025-2026 Laurent Kaczmarek

X +y+2z= 3 X+ y+2z= 3
-y—-3z=-5 <= -y —3z=-5 parl3—L3+L,
Yy - z=-1 0—-4z=-6

Il sufit de « remonter » le systeme pour le résoudre en calculant successivement z, y puis x :

X+ y+ 2z= 3 X =-1
-y - 3z=-5 < y = 3

——— Algorithme du pivot de Gauss (/5.4

X On retiendra I'algorithme suivant pour ré- X Etape 2. En utilisant le pivot et des opéra-

soudre un systéme linéaire général (£5): tions du type L; — L; — AL;, on supprime la
premiere inconnue des autres équations :

X Etape 1. On suppose qu'il y a un coefficient . o
non nul dans la premiére colonne, sinon on X Etape3. Onrevient a I'étape 1 avec le sous-
passe a I'inconnue suivante : systeme formé par les lignes restantes (s’il y

ena):

Ce coefficient est appelé pivot (en doré dans % Enfin d’algorithme. On obtient un systeme
les schémas). On permute la premiere ligne au profil échelonné:
et la ligne contenant le pivot :

que I'on résout « en remontant ».

-2x+ y+ z= 1
X Résolvons le systeme & : X — 2y + z= 1 ensuivant cette méthode:
X+ y-—-2z=-2
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X+ y—2z=-2
E == xX—-2y+4+ z= 1 parlz—L;
-2x+ y+ z= 1
X+ y—-2z=-2
<~ —-3y+3z= 3 parlp,<—Ly-Ljetly3—L3+2L;
+ 3y —-3z=-3

X+y—-2z=-2 1
— parL; — -3l
y— z=-1

On en déduit 'ensemble de ses solutions . = {(-1+z,z—1,2); z€ R}.

3. Matrices inversibles

Parmi les regles de calcul trés usuelles dans KK, le lecteur connait bien la propriété suivante :
VaeK*, V(x;,x) eK?, ax; = ax, = x1 =X (%)

On peut simplifier par un scalaire non nul dans une égalité. Il n’en va pas de méme pour les matrices,
par exemple dans .Z,(K) :

E1_1E2,1 = ELlEg,g =0 maisbien que E1,1 #0,0na E2,1 # Eg'g

Considérons une égalité de la forme AX; = AX; ot A€ .#,,(KK) et (X1,X2) € 4, (IK)2. Nous allons cher-
cher a neutraliser A dans chacun des deux membres en multipliant par un analogue du scalaire a™!
dans la propriété (x), c’est-a-dire une matrice A’ telle que A’A = I,,. En effet, sous réserve d’existence
d’une telle matrice A’, on a bien

AX; = AX, donc A'(AX;) = A/(AX»), d’ou (A'A)X; = (A'/A)X,, c'est-a-dire X; =X,

par associativité du produit matriciel. On parle d’'une simplification par A a gauche.

Considérons a présent une égalité de la forme Y; A = Y»A. La neutralisation a droite par A nous conduit
a considérer une matrice A" telle que, sous réserve d’existence, AA” = I,,. Supposons 'existence d'un
couple (A’,A”) de matrices vérifiant A’A =1,, = AA”. On a alors, par associativité du produit matriciel :

A = AI(AAI!) — (AIA)A/I - A"

Nous allons nous intéresser dans ce paragraphe aux matrices A « neutralisables a gauche et a droite »,
c’est-a-dire telles qu'il existe A’ vérifiant AA' = A’A =1,,.

3.1. Le groupe linéaire d’ordre n
Limportance de la simplification dans les calculs motive la définition qui suit.

Définition 5.19. Matrice inversible, inverse d’'une matrice inversible

Soit n € IN*.
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= On dit qu'une matrice A de .#,,(IK) est inversible lorsqu’il existe une matrice A’ de .#,,(IK) telle
que l'on ait AA' =A'A=1,.

= Dans ce cas, la matrice A’ est unique. On I'appelle I'inverse de A et on la note A,

= L'ensemble des matrices inversibles de .}, (IK) est noté GL, (IK) et est appelé le groupe linéaire
d’ordre n a coefficients dans K.

Pour A € .#,(K) inversible, on a

V(X1,X2) € My p(K)?, AX; =AX; < X1 =Xp et V(Y1,Y2) €4,,(K)?* YIA=Y1A <= Y1 =Y,

Proposition 5.20. Propriétés des matrices inversibles

Soit n e IN*, A et B dans GL,(K).

a. A_l est inversible d’inverse A, C. AT est inversible et on a (AT)_I — (A_I)T.
b. AB est inversible et (AB)"! =B 1A71;

Par une démonstration par récurrence facile, on déduit du a. que tout produit de matrices inver-
sibles est inversible.

La notion de matrice inversible est fortement connectée a la théorie des systemes linéaires. Par
exemple, un systeme linéaire de la forme AX = B ol A appartient a GL,(IK) admet pour unique so-

lution X = A™!B. La réciproque est vraie moyennant une quantification universelle sur le second
membre B.

Proposition 5.21. Caractérisation de I'inversibilité par les systemes linéaires

Soit A € ., (KK). Les propositions suivantes sont équivalentes :

a. A estinversible;

b. Pour tout Y € .4, (K), le systeme linéaire d’équation AX =Y (d’inconnue X € K"*) admet une
unique solution.

Ce théoréme présente un intérét pratique de taille : il ouvre la voie au calcul de A~! (pour A inversible)
via la résolution du systeme linéaire AX =Y pour un Y quelconque.

X Considérons A := (1 2). Pour (y1,2) € R?, ona

+ 2y = + 2y =
X +2y=p X+2y=p L, 2L,
2x+y = -3y =y2-2n
X+2y=n )
— 21—y La——3l2
y ==
_ Tty
— 3
21— )2
r=T
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On en déduit que AX =Y équivauta X =BY ou B := §(3' %). Parle théoreme précédent, on a donc
que A est inversible. Mais alors, AX =Y équivaut 8 X = A~'Y donc

VY €. #>1(K), BY = A~'Y

Pour Y; := (), on en déduit que B et A~! ont des premieres colonnes identiques puis grace a Y, :=
(9), on conclut qu’il en est de méme pour leur seconde colonne.

A ce stade du cours, nous pouvons caractériser facilement les matrices inversibles de .5 (K).

Proposition 5.22. Matrices inversibles de taille deux

Soit (a, b, ¢, d) € K*.

a. La matrice (‘Cl 2) est inversible si et seulementsi ad— bc #0.

-1
ye I LA ab _ 1 d -b
b. En cas d’inversibilité, (C d) = ad_hc(_c p )

a 3 | := ad — bc. Ce scalaire est appelé déterminant de la matrice (‘C‘ 3).

On note

Nous généraliserons ce résultat dans la suite du cours d’Algebre.
3.2. Opérations élémentaires sur les matrices

On peut généraliser les opérations élémentaires définies sur les lignes d'un systeme linéaire aux lignes
et aux colonnes d'une matrice A € .#}, ,(KK). En effet, la combinaison linéaire L; + AL; de deux lignes
de A (resp. C; + AC; de deux colonnes de A) a un sens puisque ces lignes appartiennent a ./ ()
(resp. a .51 (K)). Nous reprendrons les notations employées pour les systemes linéaires.

Définition 5.23. Matrices équivalentes -2 1 1 -2 1 1
1 -2 1|71 -2 1 |ls—ls-L
Pour (A,B) € 4y, (KK)?, on écrira respectivement 1 1 -2 0 3 -3

A~B,A~B et A~B
L C

-2 1 1 -2 1 2
si B se déduit de A par un nombre fini d’opéra- I -2 1 (] 1 -2 -1 Cs —C3+Co
tions élémentaires sur les lignes, sur les colonnes, 1 1 -2 1 1 -1
sur les lignes et les colonnes. On dit alors que A
et B sont équivalentes par lignes, par colonnes ou -2 1 1 1 1 -1 Cs3—C3+Cy
équivalentes dans le dernier cas. 1 -2 1 |17 1 -2 -1 L; — L3

1 1 -2 -2 1 2

Définition 5.24. Matrices élémentaires

Soitne IN* et (i, j) € [1, nj?.
= Dans le cas ol i # j, on note P; ; la matrice obtenue a partir de I,, en effectuant 'opération
L; < L;j.

= Pour A € K*, on note D;(A) la matrice obtenue a partir de I,, en effectuant I'opération L; — AL;.
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= Lorsque i # j et pour A € K, on note T; j(A) la matrice obtenue a partir de I,, en effectuant
I'opération du type L; < L; + AL;.

=> Les matrices des trois types précédents sont appelées matrices élémentaires de ./, (IK).

Ces matrices sont qualifiées de matrices de permutation, de dilatation et de transposition.

Pour 1 <i < j < netunscalaire A, les matrices P; j, D;(A) et T; j(A) s’écrivent respectivement :

i J ,
. ! i J
- 1 .

I 0 1 1

1 i A i 1 A
]
1 -
J 1 0 J < 1
1
| 1
1

Il faut retenir qu’effectuer une opération de pivot sur les lignes d’'une matrice revient a la multiplier a
gauche par un de ces trois types de matrices élémentaires.

Proposition 5.25. Traductions matricielles des opérations élémentaires
Soit A€ .4y, (K).
a. Permutation : P; ;A estla matrice obtenue apres I'opération L; < L; (avec i # j) sur A.
b. Dilatation : D;(A)A est la matrice obtenue apres 'opération L; — AL; (avec A € IK*) sur A.
c. Transvection : T; ;(A)A estla matrice apres I'opération L; < L; + AL; (avec i # j) sur A.

De plus, sous les hypothéses indiquées ci-dessus, les matrices P; j, D;(A) et T; ;(A) sont inversibles
et d’inverses respectives :
1
P;j, Di (X) et T;;(=A)

Ainsi, sans surprise, une matrice élémentaire est inversible et son inverse est la matrice de 'opération
«inverse », i.e. celle qui défait la modification effectuée. Comme dans le cas des opérations sur les
lignes, on vérifie que si A € .#}, ,(KK) alors :

« la matrice obtenue a partir A par I'opération C; — C; (avec i # j) est la matrice AP; ;;
 la matrice obtenue a partir A par 'opération C; — AC; (avec A € IK*) est la matrice AD;(A);

* la matrice obtenue a partir A par I'opération C; — C; + AC; (avec i # j) estla matrice AT;,; (A).

L'algorithme du pivot, généralisé aux lignes d'une matrice, aboutit a la proposition suivante.
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Proposition 5.26. Echelonnement d’'une matrice carrée

A * — %
VAE.Mn(K), I An) €K, A~ | O \\\ | || Uosplool - cbalpmenm

* des coefficients arbitraires)

Cette proposition, jointe a la suivante, nous offre un algorithme basé sur celui du pivot pour détermi-
ner I'inversibilité d'une matrice carrée et calculer son inverse le cas échéant.

Proposition 5.27. Caractérisation des matrices inversibles
Soit A € .#,,(KK).
a. Soit B telle que A ~ B. La matrice A est inversible si et seulement si B est inversible.
b. Soit (A1,...,A;) € K". On a que

Al x — %

0\\\\ ‘ est inversible sietseulementsi VYie[l,n], A; #0

*

c. Une matrice de .#,(IK) est inversible si et seulement si on peut la transformer en I,, au moyen
d’'un nombre fini d’opérations élémentaires successives sur les lignes.

d. Une matrice de .#,(K) est inversible si et seulement elle est produit de matrices d’opérations
élémentaires.

Le b. vaut aussi pour des opérations sur les colonnes.

X Par exemple :

L, — L3
-2 1 1 1 1 -2 1 0 0 1 00 L, — L,-L;
A:= _ ~ _ ~ _ ~ _ ar
1 -2 1 (71 -21]7% 3 3 |7]0-33]P Ly — Ls+2L,
1 1 -2 -2 1 1 0 3 -3 000
Ls — Lg+Ly

. ({100 . . - ) .
Comme la matrice (8 3 8) est triangulaire supérieure avec un zéro sur la diagonale, elle n’est pas
inversible donc A non plus par la proposition précédente.

Considérons une matrice M inversible et Oy, ..., O, les matrices élémentaires codant une séquence
finie d’opérations de pivot sur les lignes permettant de transformer M en I,,. Par la proposition 3.2, on
adonc

Om---OM=1,

On en déduitque M~ ! =1,M~! = 0,,---O;MM~! = O,,---0O7. Comme M~! = O,,---011,, on obtient
M~ en effectuant la méme séquence d’opérations de pivot sur les lignes de I,,.
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X Par exemple :

Ly — Lr—-1; ) Li <« Li—-Ls
puis
Ly — L3—1, L —Li—-Ly

111 111 100
M:=fy121|7[o10|7|[010]| pPar
112 001 001
En effectuant les mémes opérations a I3, on en déduit M ™! :

3 -1 -1 o, 31
11 o0 dou M =] _1 1 o

1
0
0 -1 0 1 -1 0 1

o = O
- o O
=1
|

On peut bien-str aussi procéder par des opérations sur les colonnes, mais il ne faut en aucun cas
mélanger des opérations en lignes et en colonnes.

Le lecteur s’entrainera a ce type de calcul grace au test (£ 5.5 ).

4. Quelques applications des systémes linéaires

Outre leur indéniable intérét historique et académique comme introduction a une forme d’algebre
plus abstraite, les systemes linéaires ont principalement deux cadres d’applications :

= La résolution exacte de problemes d’algébre linéaire en dimension finie : nous reviendrons en dé-
tail sur ce point mais le lecteur connait déja le cadre de la géométrie euclidienne du plan et de I'es-
pace; une fois un repére choisi, les systémes linéaires apparaissent naturellement lors des études
d’intersection.

= La résolution approchée de problémes en dimension infinie ou de problemes non-linéaires : cet
aspect est beaucoup plus récent que le précédent et s’est beaucoup développé depuis I'avénement
de l'informatique et de I'analyse numérique; nous donnerons un exemple plus bas et le lecteur est
renvoyé au cours d’'informatique pour de plus amples développements.

4.1. Géométrie du plan, de I'espace et au-dela

Position relative de deux droites du plan

Considérons un systeme de deux équations a deux inconnues

y réelles :
ax+by=c
&

On suppose le plan muni d'un repére orthonormal (O, ey, ez). No-
tons respectivement & et &' les droites d’équations ax + by = c et
a'x+ b’y = ¢ alors les solutions de & correspondent aux coordon-
nées des points d’intersection des droites Z et &'.

7'

Ainsi :
= siles triplets (a, b, ¢) et (d/, V', ¢) sont proportionnels alors les droites & et 2’ sont confondues et il
y a une infinité de solutions;
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= siles triplets (a, b, ¢) et (a’, b', ¢’) ne sont pas proportionnels mais que les couples (a, b) et (a/, 1) le
sont alors les droites 2 et 2’ sont paralléles et distinctes et il n’y a pas de solution;

= siles couples (a, b) et (a’, b') ne sont pas proportionnels alors les droites & et 2’ sont sécantes et il
y a donc une unique solution au systéme.

Finalement, pour que & admette une unique solution, il faut et il suffit que ab’ — a’b # 0 d’ot1 'équi-

valence :
ab

& admet une unique solution <= | b
a

#£0

Position relative de deux plans de I'espace

Considérons maintenant un systeme de deux équations a trois inconnues réelles :

Jax+by+cz=d
|dx+by+cz=d
On suppose I'espace muni d'un repére orthonormal (O, e;, €, €3) et on note respectivement & et &’

les plans d’équations ax+by+cz=d et a'x+b'y+c'z = d' alors les solutions de & correspondent aux
coordonnées des points d’intersection des plans & et &',

= Tout d’abord, si les quadruplets (a, b, c,d) et (a’,b’,c’,d") sont proportionnels alors les deux plans
sont confondus donc le systéme admet une infinité de solutions.

= Supposons que ces quadruplets ne sont pas proportionnels. Lintersection de & et &’ est alors
soit vide (lorsque P et P’ sont paralleles non confondus), soit une droite (lorsque & et &' ne sont
pas paralleles). Cela signifie que le systeme :

ax+by+cz=d
ax+by+cz=d

n'admet pas de solutions (cas des plans paralléles) ou bien en admet une infinité (cas des plans
non paralléles).

4.2. Utilisation en analyse numérique
La température (x, y, t) — T(x, y, t) d'un milieu bidimensionnel? soumis a une source de chaleur est
régie par I'équation suivante, dite de la chaleur® :
oT (62T OZT) s

— =kAT+S =x
ot

+— |+
0x? 0y?
ou la fonction S modélise la source de chaleur.

Sil'on s’intéresse au régime stationnaire, ie a une solution ¢ n’évoluant plus au cours du temps, on
obtient I'’équation :
0? 02
<[5+ 58] =S
0x?  0y?
Ne disposant pas en général d’'une solution explicite, on cherche pour une solution approchée en
discrétisant 'espace. Par exemple si (x, y) € [0,1]%, on découpe le carré [0,1]?> en un malliage de n?

2. Les deux premiéres variables sont spaciales, la trosieme est temporelle.
3. Lopérateur A est appelé laplacien et apparait dans de nombreuses équations de la physique (chaleur, ondes, etc).
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carrés élémentaires de méme surface. Lorsque n est grand, la température sur le carré en position
(i, j) est a peu pres constante et notée ¢, j-

On note x;; = (i/n,j/n). La formule de Taylor permet
d’écrire que

=R ndx "7 2n2ox2 M température = ¢, ;
o S 13¢ 1 3¢ :
O —-1,7) = o3, ) — 3% (xi,7) + 772 32 (xi,7) J ./

En additionnant ces deux « égalités », on obtient donc une
approximation de la dérivée seconde partielle de ¢ par rap- v
port a la premiére variable : i
O’ 2
@(xi,j) =1 (Pir1,j —2¢ij +dio1,j)
En procédant de méme pour approcher la dérivée seconde par rapport a la seconde variable, on ob-
tient une linéarisation de I'équation initiale :

2
KN (Bio1,j =205, + Givr,j+ i j-1 —2¢i j + i j+1) = =Si,j

= On obtient un systéme linéaire d'inconnues
¢;,j qui peut étre résolu en ajoutant quelques
équations représentant les conditions aux
bords du carrré.

= On peut prouver que, lorsque 7 tend vers l'in-
fini, la distribution de temptérature ¢; ; obte-
nue est une bonne approximation de la solu-
tion exacte ¢.

= En adoptant une convention de colorisation,
on peut visualiser les approximations obte-
nues en faisant varier n afin d’ameéliorer la ré-
solution.
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5. Tests

5.1.®D

On consideére dans ., (IR) les matrices A = (a;,j)1<i,j<n, € B = (b; j)1<i j<n définies par a; j = i + j et
b; j=i— j.Calculer le terme général des matrices C=A—-B et D = AB.

52.®9

. s ; 100 001
On considere les deux matrices A := (8 (1) (1)) etB:= ((1) (lJ 8).

a. Calculer A%, B2 et B3. En déduire A" et B” pour tout entier n > 1.
b. Calculer AB, AB?, BA et B2A.

53.®9

Soit A et B dans ., (IK) et A € K tels que A = Al,, + B. Calculer A en fonction de A, Bet n
54.®9

Pour tout a € R on note .#, I'’ensemble de solutions du systeme suivant.

-X+2y+ z=2
ax+3y—- z=3
5x -8y -9z=-9

Pour quels a € R est-ce que ., est vide ? contient un unique élément ? une infinité ?

5.5.®'D

Soit n € IN*. Prouver 'inversibilité et calculer 'inverse des matrices suivantes :

1 0 1 11-1 201 2113
a.(z—l 1); b. (20 1); C. (—11 1); d. [10-10
a1 -1 21-1 10- clo211]
43 2 4
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6. Solutions

5.1.e8 O

Notons
C=(ci,ji<i,j<n €t D=(d; i<i,j<n
= CalculdeC: pourtous1<i,j<n,ona
Ci,j = ai,j = bij=2j

= CalculdeD: pourtous1<i,j<n,ona

n

n
dij=Y apxbe;j=Y (i+kk-j
k=1 k=1

n n n
=(i-)D Y k+ Y K-ijy 1
k=1 k=1 k=1

nn+1) N nn+1)2n+1) B

2 6

=(—-J)

5.2.e8 9O
a. OnaA” =13 B° = (?8(1)) et B° =135. On en
déduit les calculs suivants :

=> Puissances de A : si n est pair A" =I5, si-
non A" = A.

= Puissances de B : si n = 0[3], B” = I3; si
n=1[3],B"=B;sin=2[3], B” =B2.

b. Ona

AB:(S?%), BA:(%S)

100 001

puis AB? = (‘1’68) et B2A = (8%).
001 100

53.88 O

Par linéarité de la trace,

trA=nA+trB

trA—trB
A=———
n

d’ou
54.88 O

On applique la méthode du pivot de Gauss. En
notant & ce systéme, ona

LLG ¥ HX6

-X+2y+z =2
& < { ax+3y-z =3
5x—-8y-9z = -9

-Xx+2y+z =

— § B+2a)y+(a-1)z =3+2a
2y—4z =1
-X+2y+z =2

— { 2y-4z =1
B+2a)y+(a—1)z = 3+2a
—X+2y+z=2

— { 2y-4z =1
ba+d)z = %+a

Le systeme de I"’énoncé est donc équivalent au
systeme
—X+2y+z=2
2y—4z=1
3

5(a+1)z = 5+a

= Si a=-1la derniére ligne selit 0 = % et donc
B _1=4d.

= Si a # —1 on résout en remontant du bas
vers le haut et on trouve une solution unique
(dont le calcul n’est pas demandé).

Ainsi .¥,; n'est jamais un ensemble infini.

5.5.88 O

On applique a chaque fois la méthode du pivot
en effectuant les opérations sur la matrice iden-
tité en parallele.

a. Ona

10 1 100
(0 -1 —1) (—210)
01 0 101

puis, en effectuant L, < Ls,

10 1 100
(01 0)(101)
0-1-1 =211

continuons par L3 < — (L3 < L3 + L),
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C.

enfin, par L; < L; —Ls,

100 01 1
(010)(10 1)
001 1-1-1

La matrice A est donc inversible d’inverse
_ 01 1
Al = (1 0 1 )

1-1-1
Ona
11-1 100
(20 1)(010)
21-1 001
parL2<—L2—2L1e L <—L3—2L1,
11 -1 00
(0 23)( 10)
1 201

puis, en effectuant L, — —L3 et Ly — Lo,

11 -1 100
(O 1 —1) (—201)
0-23 =210

continuons par Lg < L3 — L3 + 2L,

11-1 100
(01—1) (20—1)
001 21-2

puis,parL; < Lo +LzetL; < L;+Lg,
110\ (31-2
(118 (313
001/ \21-2
enfin, par L < L; < L; — Ly,
100\ (=10 1
(0 1 0) ( 4 1—3)
001/ \21-2
La matrice B est donc inversible d’inverse

B = (413

Ona

et, par 'opération L; < L3,

1 0-1) (001
(417 (894)
201/\100
puis, en effectuant les opérations Ly — L, +
LietLs — (L3 —2L;)/3,

10-1 00 1
(010)(0 1 1 )
001 1/3 0 -2/3

enfin, par L; < L; +Ls,
100Y) (1/3 0 1/3
( 01 o) ( 0 )
001/ \1/3 0 2/3
La matrice C est donc inversible d’'inverse

_ 1/30 1/3
C 1:(o 1 1 )
1/3 0 —2/3

LLG ¥ HX6

Laurent Kaczmarek

Ona

10-10 01 00
01 3 3 1 -200
0211 00 10
0020 -1-2-11

continuons par les opérations Ly — L4/2 et
3 — —(L3s—2L2)/5,

10-10 0 1 0 0
0133 1 -2 0 0
001 1] | 255 —a/5-1/5 0
0010/ \-1/2 -1 -1/21/2
puis par Lg < Ly,
10-10 0 1 0 0
01 33 1 -2 0 0
0010 [-172 -1 -1/21/2
001 1/ \2/5 -4/5-1/5 0
effectuons Ly — Ly —Lg,
10-10 0 1 0 0
01 33 1 -2 0 0
(00 1 0) (—1/2 -1 -1/2 1/2)
00 0 1/ \9/10 1/5 3/10 —1/2
plIiS L, —Ly—3(L3+Ly),
10-10 0 1 0 0
01 00| |-1/52/53/5 0
0010 (-1/2-1-1/2 1/2
00 0 1/ \9/10 1/5 3/10 —1/2
etenfinL; —L; +Lg,
00\ (-1/2 0 -1/2 1/2
00| [-1/52/5 3/5 0
(1)(1) —1/2 -1 -1/2 1/2

9/10 1/5 3/10 -1/2

La matrice D est donc inversible d’inverse

-1/2 0
-1/52/5 3/5 0
-1/2 -1 =1/2 1/2

-1/2 1/2
9/10 1/5 3/10 —1/2
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