
Ù ALG 5 Calcul matriciel

L’algèbre linéaire, que nous étudierons dans la suite du cours, est née de la théorie
des systèmes linéaires. Ces chapitres constituent une introduction aux matrices à
coefficients dans le corpsK=R ouC.

Matrice de gravure (Albrecht Dürer)

5 Calcul matriciel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1 Calcul matriciel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1 Sommes et combinaisons linéaires . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Produit matriciel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Puissances d’une matrice carrée . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Matrices carrées triangulaires . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.5 Transposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.6 Trace d’une matrice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Systèmes linéaires . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1 Vocabulaire sur les systèmes linéaires . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Algorithme du pivot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Matrices inversibles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1 Le groupe linéaire d’ordre n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 Opérations élémentaires sur les matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 Quelques applications des systèmes linéaires . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.1 Géométrie du plan, de l’espace et au-delà . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Utilisation en analyse numérique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5 Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23



2025-2026 Laurent Kaczmarek

L’ idée de matrice s’est lentement forgée au fil de siècles. Elle est naturellement née de l’étude
des systèmes d’équations linéaires, et on en retrouve la trace jusqu’à l’époque babylonienne.
Cardan énonça dans son Ars Magna dès règles générales permettant la résolution des sys-

tèmes d’équations linéaires à deux inconnues.

Dès lors, tous les développements concernant les systèmes linéaires, ont tourné autour de la notion
de déterminant. Aprés les travaux de Leibniz, Laplace, Vandermonde et d’autres savants, Gauss in-
troduit le mot déterminant et propose une technique générale de résolution des systèmes d’équations
linéaires, la méthode du pivot.

Le premier savant à employer le mot matrice
fut cependant Sylvester en 1850. Ce dernier fit
partager ses découvertes à Cayley qui publia en
1858 son Memoir on the theorie of matrices dans
lequel il énonça le résultat aujourd’hui appelé
théorème de Cayley-Hamilton (mais qui ne fut
prouvé dans le cas général que par Frobenius
en 1896). Dans cet ouvrage, Arthur Cayley défi-
nit les opérations usuelles sur les matrices (addi-
tion, multiplications interne et externe, passage
à l’inverse) et expose le calcul explicite de l’in-
verse à l’aide du déterminant. Vandermonde Gauss

Il fallut cependant attendre la première moitié du XXe siècle pour que la théorie des matrices devienne
un des piliers de l’enseignement des mathématiques, notamment grâce aux cours de Camille Jordan
à Paris.

Cayley Sylvester Frobenius Jordan

Depuis l’avènement du calcul numérique et de l’informatique, les systèmes linéaires ont connu un
regain d’intérêt. Les capacités et la vitesse de calcul ont ouvert la voie à la résolution de systèmes li-
néaires de taille gigantesque. Des méthodes de discrétisation fondées sur l’idée de linéarisation ont vu
le jour pour la résolution approchée d’équations différentielles et d’équations aux dérivées partielles.
Nous évoquerons ces aspects dans la dernière section de ce cours, mais seulement à titre culturel.
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1. Calcul matriciel

Dans tout ce chapitre, K désigne R ou C. Dans ce cadre, les éléments de K sont traditionnellement
qualifiés de « scalaires ».

Définition 5.0. Vocabulaire sur les matrices

Soit p et n dansN∗.

On appelle matrice à n ligne(s) et p colonne(s) à coefficient(s) dansK toute famille d’éléments
deK indexée par le produit cartésien �1,n�×�1, p�.

Une matrice est dite carrée si elle compte autant de ligne(s) que de colonne(s). Sa taille est alors
par définition son nombre de ligne(s).

L’ensemble de ces matricesK�1,n�×�1,p� est noté plus simplement Mn,p (K).

L’ensemble Mn,n(K) des matrices carrées de taille n est noté Mn(K).

Pour A = (ai , j ) 1⩽i⩽n
1⩽ j⩽p

∈ Mn,p (K) et (i , j ) ∈ �1,n� × �1, p�, le nombre ai , j est appelé coefficient

d’indices (i , j ) de A (on peut aussi dire de position (i , j )).

La matrice de Mn,p (K) dont tous les coefficients sont nuls est appelée matrice nulle. On la note
0n,p ou plus simplement 0, s’il n’y pas d’ambiguité sur les valeurs n et p.

D’une manière moins formelle, une ma-
trice A à n lignes et p colonnes à coeffi-
cients dans K est la donnée de np élé-
ments deK répartis dans un tableau à n
lignes et p colonnes.

Par convention, Ai , j est le coefficient sur
la ligne i et la colonne j de la matrice A.

a1,1 a1,p

an,1 an,p


 ai , j


 Ligne i

Colonne j

Notation des coefficients d’une matrice

Afin de mener des démonstrations et des calculs efficacement, il est conseillé de noter ai , j , Ai , j ,
(A)i , j ou encore [A]i , j , les coefficients d’une matrice A.

Pour A := (ai , j ) 1⩽i⩽n
1⩽ j⩽p

∈Mn,p (K) et (i , j ) ∈ �1,n�×�1, p�, les matrices

a1, j

an, j


 et ai ,1 ai ,p

)(
sont respectivement appelées j -ème colonne et i -ème ligne de A

Lorsque n = p, on appelle diagonale de A, la n-liste suivante :(
a1,1, . . . , an,n

) a1,1 a1,n

an,1 an,n




Dans le cadre du calcul matriciel, le symbole de Kronecker sera très largement utilisé :

LLG . HX 6 3
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Définition 5.1. Symbole de Kronecker

On note δ la famille indexée parN2 à valeurs dans
{
0,1

}
définie par

∀(i , j ) ∈N2 , δi , j =
{

1 si i = j

0 si i ̸= j

1.1. Sommes et combinaisons linéaires

Définition 5.2. Somme, produit par un scalaire

On considère deux matrices A := (ai , j ) 1⩽i⩽n
1⩽ j⩽p

et B := (bi , j ) 1⩽i⩽n
1⩽ j⩽p

ainsi qu’un scalaire λ.

La matrice somme de A et B est la matrice, notée A+B, définie par A+B = (ai , j +bi , j ) 1⩽i⩽n
1⩽ j⩽p

.

On. note λA la matrice définie par λA = (λai , j ) 1⩽i⩽n
1⩽ j⩽p

.

En particulier, avec les notations de la définition et des scalaires λ, µ :

λA+µB =
λa1,1 +µb1,1 λa1,p +µb1,p

λan,1 +µbn,1 λan,p +µbn,p





Proposition 5.2. Règles de calculs

Soit n et p dansN∗. Ces deux opérations vérifient les propriétés suivantes :

a. Élément neutre : ∀A ∈Mn,p (K) , A+0 = 0+A = A.

b. Associativité : ∀(A,B,C)Mn,p (K)3 , (A+B)+C = A+ (B+C) ;

c. Commutativité : ∀(A,B)Mn,p (K)2 , A+B = B+A;

d. Distributivité : ∀(A,B,C)Mn,p (K)3 , ∀λ ∈K , λ(A+B) = λA+λB.

Ces règles de calcul, analogues à celles vérifiées par les nombres complexes, nous permettent d’utili-
ser le symbole Σ dans le cadre des matrices avec une généralisation (par récurrence sur le nombre de
matrices) des règles précédentes :

n∑
i=1

(λAi +µBi ) = λ
n∑

i=1
Ai + µ

n∑
i=1

Bi

pour des matrices A1, . . ., An , B1, . . ., Bn dans Mn,p (K) et des scalaires λ, µ.

LLG . HX 6 4
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Définition 5.3. Base canonique de Mn,p (K)

Soit (n, p) ∈N∗×N∗.

Pour (i , j ) ∈ �1,n�×�1, p�, on note Ei , j la matrice de Mn,p (K) dont tous les coefficients sont nuls,
sauf celui d’indices (i , j ).

La famille (Ei , j ) 1⩽i⩽n
1⩽ j⩽p

est appelée base canonique de Mn,p (K).

Attention, la notation Ei , j est incomplète puisqu’elle ne fait pas référence au couple (n, p).

Par exemple, pour n = p = 2, on a

E1,1 = 1 0
0 0

)(
, E1,2 = 0 1

0 0

)(
, E2,1 = 0 0

1 0

)(
et E2,2 = 0 0

0 1

)(
Ainsi, pour A = (ai , j )1⩽i , j⩽2 ∈M2(K), on a

A = a1,1 a1,2

a2,1 a2,2

)(
= a1,1

1 0
0 0

)(
+a1,2

0 1
0 0

)(
+a2,1

0 0
1 0

)(
+a2,2

0 0
0 1

)(

Plus généralement, pour A = (ai , j ) 1⩽i⩽n
1⩽ j⩽p

∈Mn,p (K), on a A =
n∑

i=1

p∑
j=1

ai , j Ei , j .

1.2. Produit matriciel

Définition 5.4. Produit matriciel

Soit A := (ai , j ) 1⩽i⩽n
1⩽ j⩽p

une matrice de Mn,p (K) et B := (bi , j ) 1⩽i⩽p
1⩽ j⩽m

une matrice de Mp,m(K).

Le produit de A par B est la matrice, notée AB, de Mn,m(K) dont le coefficient d’indices (i , j ) est :

p∑
k=1

ai ,k bk, j

a1,1 a1,p

ai ,1 ai ,k ai ,p

an,1 a1,p



Ligne i

b1,1 b1, j b1,m

bk, j

bp,1 bp, j b1,m





Colonne j

ci , j





ci , j =
p∑

k=1
ai ,k bk, j

Le produit AB n’est défini que si le
nombre de colonnes de A est égal au
nombre de lignes de B.

En cas d’existence, AB hérite de A son
nombre de ligne(s) et de B son nombre
de colonne(s).

On peut « poser » le produit AB en posi-
tionnant A et B comme ci-contre et en
remplissant coefficient par coefficient le
tableau.

On calcule ci , j à partir de « la ligne de
gauche et de « la colonne du dessus ».

LLG . HX 6 5
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Par exemple,

a b
c d

)(
1 −1
2 1

)(
= a +2b −a +b

c +2d −c +d

)(
Il faut connaître les relations suivantes, qui se démontrent (voire se retrouvent) facilement « en po-
sant » les produits :

Proposition 5.4. Produits canoniques

On note (Ei , j )1⩽i , j⩽n la base canonique de Mn(K). Pour tout (i , j ) et (k,ℓ) dans �1,n�2, on a
Ei , j Ek,ℓ = δ j ,k Ei ,ℓ. Cette formule se généralise facilement à un produit de matrices de tailles res-
pectives (n, p) et (p,m).

Le produit matriciel n’est pas commutatif et admet des diviseurs de zéros, c’est-à-dire qu’il existe des
matrices non nulles dont le produit est nul :

1 0
0 0

)(
0 1
0 0

)(
= 0 1

0 0

)(
et 0 1

0 0

)(
0 1
0 0

)(
= 0

Revenons à l’exemple, ci-dessus. Nous remarquons que

a +2b
c +2d

)(
= a b

c d

)(
1
2

)(
et −a +b

−c +d

)(
= a b

c d

)(
−1
1

)(
Le produit AB peut donc aussi se calculer colonne par colonne (au lieu de la définition coefficient par
coefficient) en calculant les produits AB1, . . ., ABm où B1, . . ., Bm désignent les colonnes de B.

Proposition 5.5.

Soit (A,B) ∈Mn,p (K)×Mp,m(K). Les colonnes de AB sont AB1,
. . ., ABm où B1, . . ., Bm sont celles de B.

De même en désignant par A′
1, . . ., A′

n les lignes de A, les lignes de
AB sont A′

1B, . . ., A′
mB.

L’expression du produit matriciel au moyen des colonnes aura une
grande importance en théorie et en pratique dans l’ensemble du
cours d’Algèbre linéaire.

A




B j




Colonne j

AB j




Le produit AX, avec A ∈ Mn,p (K) et X une colonne de taille p, s’interprète comme une combinaison
linéaire des colonnes de A dont les coefficients sont ceux de X :

a b
c d

)(
1
2

)(
= a +2b

c +2d

)(
= 1 · a

c

)(
+2 · b

d

)(
Plus généralement :

A1 Ap




λ1

λp


 =

p∑
j=1

λ j A j (combinaison linéaires des colonnes A1, . . ., Ap )

LLG . HX 6 6
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µ1 µn

)(
µ1 µn

A′
1

A′
n


 =

n∑
i=1

µi A′
i (combinaison linéaires des lignes A′

1, . . ., A′
n)

En particulier, il est important de savoir que ∀ j ∈ �1, p� et ∀i ∈ �1,n� :

A j = A1 Ap




0

1

0


 j1

0 1 0
)(

0 1 0

i

1

A′
1

A′
n


 = A′

i

Définition 5.6. Matrice identité de taille p

Soit p ∈N∗. On note Ip := (
δi , j

)
1⩽i , j⩽n (matrice identité de taille p).

Proposition 5.7. Règles de calculs
(
E5.1

)
Soit n, m, p et q dansN∗.

a. Élément neutre : ∀A ∈Mn,m(K) , In A = A et AIm = A.

b. Associativité : ∀(A,B,C) ∈Mn,m(K)×Mm,p (K)×Mp,q (K) , A(BC) = (AB)C ;

c. Distributivité :

∀(A,B,C,D) ∈Mn,m(K)2×Mm,p (K)2 , (λA+µB)C = λ(AC)+µ(BC) , A(λC+µD) = λ(AC)+µ(AD)

1.3. Puissances d’une matrice carrée

L’associativité du produit matriciel permet de définir les puissances d’une matrice carrée :

Définition 5.8. Puissances d’une matrice carrée
(
E5.2

)
Soit p ∈N∗. Pour tout n ∈N∗ et M ∈Mp (K), on pose M0 := Ip et Mn = M × ·· · × M︸ ︷︷ ︸

n termes

.

Calculons les puissances de la matrice U := (1)1⩽i , j⩽p . On obtient facilement par la définition que
U2 = pU. On a alors U3 = U2 ×U = pU2 = p2U et, par une récurrence facile, Un = pn−1U pour tout
entier naturel n non nul et U0 = Ip .

On vérifie facilement que les propriétés usuelles surC restent valables dans ce cadre, et se démontrent
essentiellement par récurrence en utilisant l’associativité mentionnée ci-dessus :

∀(A,B) ∈Mp (K)2 , ∀(n,m) ∈N2 ,

{ (
An

)m = Anm

An Am = An+m
et , si AB = BA, ∀n ∈N , (AB)n = AnBn

On notera la condition nécessaire AB = BA pour la dernière propriété. Par exemple, on a(
E1,2E2,1

)2 = E2
1,1 = E1,1 et E2

1,2E2
2,1 = 0×0 = 0

LLG . HX 6 7
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Définition 5.9. Commutation

Soit p ∈N∗. On dit que des éléments A et B de Mp (K) commutent si AB = BA.

Considérons deux matrices A et B de Mp (K). Si AB ̸= BA, alors

(A+B)× (A+B) = A2 +AB+BA+B2 ̸= A2 +2AB+B2

(A+B)× (A−B) = A2 −AB+BA+B2 ̸= A2 −B2

Mais, en cas de commutation, les formules de factorisation et du binôme (démontrées pour les
nombres complexes dans ALG 3) sont applicables.

Proposition 5.10. Fomules du binôme et de factorisation

Soit p ∈N∗, A et B deux matrices de Mp (K) qui commutent.

a. ∀n ∈N, (A+B)n =
n∑

k=0

(
n

k

)
Ak Bn−k ; b. ∀n ∈N∗, An −Bn = (A−B)

n−1∑
k=0

An−1−k Bk .

La formule du binôme permet de calculer les puissances d’une matrice s’écrivant comme somme de
deux matrices qui commutent 1.

Calculons par exemple les puissances de la matrice A :=
(

1 1 0
0 1 1
0 0 1

)
.

On a A = I3 +N où N :=
(

0 1 0
0 0 1
0 0 0

)
. Comme N2 =

(
0 0 1
0 0 0
0 0 0

)
, on a N3 = 0, puis Nk = 0 pour tout k ⩾ 3.

De plus, InN = NIn = N donc on peut appliquer la formule du binôme :

An = (I3 +N)n =
n∑

k=0

(
n

k

)
Nk =

(
n

0

)
N0 +

(
n

1

)
N+

(
n

2

)
N2 = I3 +nN+ n(n −1)

2
N2 =

1 n
n(n −1)

2
0 1 n
0 0 1




Cette technique se généralise bien à A = λIp +N où N est une matrice nilpotente.

Définition 5.11. Nilpotence

Soit p ∈N∗. On dit qu’un élément N de Mp (K) est nilpotent s’il existe n ∈N tel que Nn = 0.

La formule de factorisation admet un cas particulier important, celui des sommes géométriques. En
l’absence d’inversibilité, la formule des sommes géométriques s’écrit sans passage à l’inverse.

Sommes géométriques matricielles

Pour A ∈Mm(K) et n ∈N∗, on a (A− Im)
n−1∑
k=0

Ak = An − Im .

1. Mais cela n’a bien-sûr d’intérêt que si les puissances de ces deux matrices sont simples à calculer.

LLG . HX 6 8
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1.4. Matrices carrées triangulaires

Les matrices diagonales et triangulaires jouent un rôle important dans la théorie des Matrices.

Définition 5.12. Matrices diagonales, triangulaires

Soit n ∈N∗. On considère une matrice carrée A = (ai , j )1⩽i , j⩽n .

On dit que A est une matrice diagonale lorsque ai , j = 0 pour tout (i , j ) ∈ �1,n�2 tel que i ̸= j .

On dit que A est une matrice triangulaire supérieure lorsque ∀(i , j ) ∈ �1,n�2 , i > j =⇒ ai , j = 0.

On dit que A est une matrice triangulaire inférieure lorsque ∀(i , j ) ∈ �1,n�2 , j > i =⇒ ai , j = 0.

On note respectivement Dn(K), T +
n (K) et T −

n (K) les ensembles des matrices diagonales, triangu-
laires supérieures et triangulaires inférieures. On a bien-sûr Dn(K) = T −

n (K)∩T +
n (K).

Par exemple,
(

1 −1 1
0 2 3
0 0 3

)
et

(
1 0 0
0 2 0
2 1 3

)
sont respectivement triangulaires supérieure et inférieure.

Proposition 5.13. Stabilité de T ±
n (K) par les opérations matricielles

Soit n ∈N∗. L’ensemble T +
n (K) est stable par combinaison linéaire et par produit :

∀(A,B) ∈T +
n (K)2 , ∀(λ,µ) ∈K2 , λA+µB ∈T +

n (K) et AB ∈T +
n (K)

Pour (A,B) ∈T +
n (K)2 et i ∈ �1,n�, (AB)i ,i = Ai ,i Bi ,i . Le même résultat vaut pour T −

n (K) et Dn(K).

1.5. Transposition

Définition 5.14. Matrice transposée

Pour toute matrice A = (ai , j ) 1⩽i⩽n
1⩽ j⩽p

de Mn,p (K), on note A⊤ := (a j ,i ) 1⩽i⩽n
1⩽ j⩽p

. C’est un élément de

Mp,n(K).

C’est la matrice obtenue « en mettant en colonne » les lignes de A (ou inversement d’ailleurs), elle est
appelée transposée de A :

1 0 5
2 1 3
3 4 2
0 0 0




⊤

=
1 2 3 0
0 1 4 0
5 3 2 0


 ,

1 0 5
2 1 3
3 4 2
0 0 0




⊤

=
1 2 3 0
0 1 4 0
5 3 2 0




Dans le cas d’une matrice carrée A, la matrice A⊤ s’obtient en effectuant la symétrie par rapport à la
diagonale de A :

a b c
d e f

g h i




⊤

=
a d g

b e h
c f i


 par la symétrie

a b c

d f

g h i




e
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Proposition 5.14. Propriétés de la transposition

a. Pour toute matrice A, on a (A⊤)⊤ = A.

b. Pour A = (ai , j ) 1⩽i⩽n
1⩽ j⩽p

et B = (bi , j ) 1⩽i⩽n
1⩽ j≤p

dans Mn,p (K) et λ, µ des scalaires, on a

(λA+µB)⊤ = λA⊤+µB⊤ (linéarité de la transposition)

c. Pour A = (ai , j ) 1⩽i⩽n
1⩽ j⩽p

dans Mn,p (K) et B = (bi , j ) 1⩽i⩽p
1⩽ j⩽m

dans Mp,m(K), on a (AB)⊤ = B⊤A⊤.

Définition 5.15. Matrices symétriques ou antisymétriques

Soit A une matrice carrée.

On dit que A est symétrique si A = A⊤ ; On dit que A est antisymétrique si A =−A⊤.

On note Sn(K) (resp. An(K)) l’ensemble des matrices symétriques (resp. antisymétriques) de
Mn(K).

Par exemple, les matrices
(

1 −1 1−1 2 3
1 3 4

)
et

(
0 1 2−1 0 3−2 −3 0

)
sont respectivement symétrique et antisymétrique.

Plus généralement, la diagonale d’une matrice antisymétrique A est toujours nulle car la condition
A⊤ =−A impose Ai ,i =−Ai ,i pour tout indice i .

1.6. Trace d’une matrice

Définition 5.16. Trace d’une matrice carrée

Pour toute matrice carrée A = (ai , j ) de Mn(K), on note tr(A) =
n∑

k=1
ai ,i .

Ce nombre est appelé trace de la matrice A.

On a tr
(

a b
c d

)
= a +d .

Par exemple, pour tout n dansN∗, on a tr In = n. La trace de la matrice nulle est nulle quelque soit
sa taille.

Proposition 5.16. Propriétés de la trace
(
E5.3

)
Soit n ∈N∗.

a. La trace est linéaire : pour tous A et B dans Mn(K) et λ ∈K, tr(A+λB) = tr(A)+λ tr(B).

b. Pour tous A et B dans Mn(K), tr(AB) = tr(BA).

c. Pour tout A ∈Mn(K), tr(A) = tr
(
A⊤)

.

En particulier, tr(λA) = λ tr(A) pour tout (λ, A) ∈K×Mn(K).
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2. Systèmes linéaires

Le système linéaire suivant


x + y − z = 1

2x − y + 3z = 2

x + 2z = 0

d’inconnues x, y , z réelles peut se reformuler au
moyen du calcul matriciel :

1 1 −1
2 −1 3
1 0 2


 x

y
z


 =

1
2
0




2.1. Vocabulaire sur les systèmes linéaires

Définition 5.17. Système linéaire à n équations et p inconnues

Soit n et p dansN∗.

On appelle système linéaire à n équation(s) et p inconnue(s), toute équation s’écrivant sous la
forme AX = B où A ∈Mn,p (K) et B ∈Mn,1(K) sont des données et X ∈Mp,1(K) est l’inconnue.

La matrice A est appelée matrice du système linéaire.

Le système linéaire d’équation AX = 0 est appelé système linéaire homogène associé à AX = B.

L’ensemble des solutions du système AX = B est par définition
{

X ∈Mp,1(K) ; AX = B
}
.

Un système linéaire est dit compatible si l’ensemble de ses solutions est non vide.

On remarque que si X̃ est une solution du système E : AX = B, alors pour tout X ∈Mp,1(K) :

X est solution de S ⇐⇒ AX = B

⇐⇒ AX = AX̃

⇐⇒ A(X− X̃) = 0

⇐⇒ X− X̃ est solution du système homogène E0 associé à E

Proposition 5.17. Structure de l’ensemble des solutions d’un système linéaire

Soit A ∈Mn,p (K) et B ∈Mn,1(K). Considérons le système linéaire E : AX = B.

a. Le système E est compatible si et seulement si B est combinaison linéaire des colonnes de A,
i.e. :

∃(x1, . . . , xp ) ∈Kp , B =
p∑

i=1
xi Ai où A1, . . ., Ap sont les colonnes de A

b. Si E est compatible, alors l’ensemble de ses solutions est

S := {
X̃+XH ; XH ∈S0

}
où X̃ désigne une solution particulière de E et S0 l’ensemble des solutions du système linéaire
homogène E0 : AX = 0 associé à E .
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2.2. Algorithme du pivot

La résolution d’un système linéaire à deux équations et deux inconnues peut être effectuée au moyen
de substitutions :{

x + y = 1

2x − y = 2
⇐⇒

{
y = 1−x

2x − y = 2
⇐⇒

{
y = 1−x

2x − (1−x) = 2
⇐⇒

{
y = 0

x = 1

Cette technique se généralise mal à un nombre d’inconnues et d’équations supérieures. La résolu-
tion d’un système linéaire général s’effectue facilement au moyen de l’algorithme du pivot de Gauss
que nous allons décrire dans la suite de ce paragraphe. Celui-ci nécessite l’introduction d’opérations
usuelles sur les lignes d’un système linéaire.

Notation 5.18. Opérations élémentaires sur les lignes

Considérons une matrice A ∈Mn,p (K) ou un système linéaire à n lignes et p colonnes dont on note
L1, . . . ,Ln les lignes.

Le fait permuter deux lignes Li et L j se note Li ↔ L j .

Le fait de multiplier Li par λ ̸= 0 se note Li ← λLi .

Le fait d’ajouter λ ·L j à Li , pour i ̸= j , se note Li ← Li +λL j .

Comme chacune de ses opérations est réversible, on en déduit le résultat suivant :

Opérations élémentaires sur les lignes un système linéaire

Effectuer un nombre fini d’opérations élémentaires successives sur un système linéaire n’en change
pas l’ensemble des solutions.

L’algorithme du pivot permet d’aboutir, à l’aide d’opérations élémentaires sur les lignes, à un système
linéaire échelonné.

Considérons par exemple le système 
2x + y + z = 1

x + 2y + z = 2

x + y + 2z = 3

La première étape consiste à choisir l’une des trois équations qui va nous servir à supprimer l’in-
connue x dans les autres. Il faut pour cela trouver une équation où le coefficient de x est non nul
et le plus simple possible pour la suite des calculs. Le choix d’un coefficient égal à 1 est optimal :

x + y + 2z = 3

2x + y + z = 1

x + 2y + z = 2

⇐⇒


x + y + 2z = 3

− y − 3z = −5

y − z = −1

par L2 ← L2 −2L1 et L3 ← L3 −L1

On ne touche plus désormais à la première ligne et on recommence en considérant le système
formé par des deux dernières lignes, i.e. on utilise le terme en y de la seconde équation pour sup-
primer cette inconnue de la troisième équation :
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
x + y + 2z = 3

− y − 3z = −5

y − z = −1

⇐⇒


x + y + 2z = 3

−y − 3z = −5

0 − 4z = −6

par L3 ← L3 +L2

Il sufit de « remonter » le système pour le résoudre en calculant successivement z, y puis x :
x + y + 2z = 3

−y − 3z = −5

0 −4z = −6

⇐⇒


x = −1

2

y = 1
2

z = 3
2

Algorithme du pivot de Gauss
(
E5.4

)
On retiendra l’algorithme suivant pour ré-
soudre un système linéaire général

(
E 5

)
:

■ ■ ■ ■ ■ ■ = ■

■ ■ ■ ■ ■ ■ = ■

■ ■ ■ ■ ■ ■ = ■

■ ■ ■ ■ ■ ■ = ■

Étape 1. On suppose qu’il y a un coefficient
non nul dans la première colonne, sinon on
passe à l’inconnue suivante :

■ ■ ■ ■ ■ ■ = ■

■ ■ ■ ■ ■ ■ = ■

■ ■ ■ ■ ■ ■ = ■

■ ■ ■ ■ ■ ■ = ■

Ce coefficient est appelé pivot (en doré dans
les schémas). On permute la première ligne
et la ligne contenant le pivot :

■ ■ ■ ■ ■ ■ = ■

■ ■ ■ ■ ■ ■ = ■

■ ■ ■ ■ ■ ■ = ■

■ ■ ■ ■ ■ ■ = ■

Étape 2. En utilisant le pivot et des opéra-
tions du type Li ← Li −λL1, on supprime la
première inconnue des autres équations :

■ ■ ■ ■ ■ ■ = ■

■ ■ ■ ■ ■ = ■

■ ■ ■ ■ ■ = ■

■ ■ ■ ■ ■ = ■

Étape 3. On revient à l’étape 1 avec le sous-
système formé par les lignes restantes (s’il y
en a) : 

■ ■ ■ ■ ■ ■ = ■

■ ■ ■ ■ ■ = ■

■ ■ ■ ■ ■ = ■

■ ■ ■ ■ ■ = ■

En fin d’algorithme. On obtient un système
au profil échelonné :

■ ■ ■ ■ ■ ■ = ■

■ ■ ■ = ■

■ ■ = ■

■ = ■

que l’on résout « en remontant ».

Résolvons le système E :


−2x + y + z = 1

x − 2y + z = 1

x + y − 2z = −2

en suivant cette méthode :
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E ⇐⇒


x + y − 2z = −2

x − 2y + z = 1

−2x + y + z = 1

par L3 ↔ L1

⇐⇒


x + y − 2z = −2

− 3y + 3z = 3

+ 3y − 3z = −3

par L2 ← L2 −L1 et L3 ← L3 +2L1

⇐⇒
{

x + y − 2z = −2

y − z = −1
par L2 ←−1

3 L2

On en déduit l’ensemble de ses solutions S = {
(−1+ z, z −1, z) ; z ∈R}

.

3. Matrices inversibles

Parmi les règles de calcul très usuelles dansK, le lecteur connaît bien la propriété suivante :

∀a ∈K∗ , ∀(x1, x2) ∈K2 , ax1 = ax2 =⇒ x1 = x2 (⋆)

On peut simplifier par un scalaire non nul dans une égalité. Il n’en va pas de même pour les matrices,
par exemple dans Mn(K) :

E1,1E2,1 = E1,1E2,2 = 0 mais bien que E1,1 ̸= 0, on a E2,1 ̸= E2,2

Considérons une égalité de la forme AX1 = AX2 où A ∈Mn(K) et (X1,X2) ∈Mn(K)2. Nous allons cher-
cher à neutraliser A dans chacun des deux membres en multipliant par un analogue du scalaire a−1

dans la propriété (⋆), c’est-à-dire une matrice A′ telle que A′A = In . En effet, sous réserve d’existence
d’une telle matrice A′, on a bien

AX1 = AX2 donc A′(AX1) = A′(AX2) , d’où (A′A)X1 = (A′A)X2 , c’est-à-dire X1 = X2

par associativité du produit matriciel. On parle d’une simplification par A à gauche.

Considérons à présent une égalité de la forme Y1A = Y2A. La neutralisation à droite par A nous conduit
à considérer une matrice A′′ telle que, sous réserve d’existence, AA′′ = In . Supposons l’existence d’un
couple (A′, A′′) de matrices vérifiant A′A = In = AA′′. On a alors, par associativité du produit matriciel :

A′ = A′(AA′′) = (A′A)A′′ = A′′

Nous allons nous intéresser dans ce paragraphe aux matrices A « neutralisables à gauche et à droite »,
c’est-à-dire telles qu’il existe A′ vérifiant AA′ = A′A = In .

3.1. Le groupe linéaire d’ordre n

L’importance de la simplification dans les calculs motive la définition qui suit.

Définition 5.19. Matrice inversible, inverse d’une matrice inversible

Soit n ∈N∗.
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On dit qu’une matrice A de Mn(K) est inversible lorsqu’il existe une matrice A′ de Mn(K) telle
que l’on ait AA′ = A′A = In .

Dans ce cas, la matrice A′ est unique. On l’appelle l’inverse de A et on la note A−1.

L’ensemble des matrices inversibles de Mn(K) est noté GLn(K) et est appelé le groupe linéaire
d’ordre n à coefficients dansK.

Pour A ∈Mn(K) inversible, on a

∀(X1,X2) ∈Mn,p (K)2 , AX1 = AX1 ⇐⇒ X1 = X2 et ∀(Y1,Y2) ∈Mp,n(K)2 , Y1A = Y1A ⇐⇒ Y1 = Y2

Proposition 5.20. Propriétés des matrices inversibles

Soit n ∈N∗, A et B dans GLn(K).

a. A−1 est inversible d’inverse A;

b. AB est inversible et (AB)−1 = B−1A−1 ;

c. A⊤ est inversible et on a
(
A⊤)−1 = (

A−1
)⊤

.

Par une démonstration par récurrence facile, on déduit du a. que tout produit de matrices inver-
sibles est inversible.

La notion de matrice inversible est fortement connectée à la théorie des systèmes linéaires. Par
exemple, un système linéaire de la forme AX = B où A appartient à GLn(K) admet pour unique so-
lution X = A−1B. La réciproque est vraie moyennant une quantification universelle sur le second
membre B.

Proposition 5.21. Caractérisation de l’inversibilité par les systèmes linéaires

Soit A ∈Mn(K). Les propositions suivantes sont équivalentes :

a. A est inversible ;

b. Pour tout Y ∈ Mn,1(K), le système linéaire d’équation AX = Y (d’inconnue X ∈Kn) admet une
unique solution.

Ce théorème présente un intérêt pratique de taille : il ouvre la voie au calcul de A−1 (pour A inversible)
via la résolution du système linéaire AX = Y pour un Y quelconque.

Considérons A := (
1 2
2 1

)
. Pour (y1, y2) ∈R2, on a

{
x + 2y = y1

2x + y = y2
⇐⇒

{
x + 2y = y1

− 3y = y2 −2y1
L2 ← L2 −2L1

⇐⇒
 x + 2y = y1

y = 2y1 − y2

3

L2 ←−1
3 L2

⇐⇒


x = −y1 +2y2

3
y = 2y1 − y2

3
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On en déduit que AX = Y équivaut à X = BY où B := 1
3

(−1 2
2 −1

)
. Par le théorème précédent, on a donc

que A est inversible. Mais alors, AX = Y équivaut à X = A−1Y donc

∀Y ∈M2,1(K) , BY = A−1Y

Pour Y1 := (
1
0

)
, on en déduit que B et A−1 ont des premières colonnes identiques puis grâce à Y2 :=(

0
1

)
, on conclut qu’il en est de même pour leur seconde colonne.

À ce stade du cours, nous pouvons caractériser facilement les matrices inversibles de M2(K).

Proposition 5.22. Matrices inversibles de taille deux

Soit (a,b,c,d) ∈K4.

a. La matrice
(

a b
c d

)
est inversible si et seulement si ad −bc ̸= 0.

b. En cas d’inversibilité,
(

a b
c d

)−1 = 1
ad−bc

(
d −b−c a

)
.

On note
∣∣∣a b

c d

∣∣∣ := ad −bc. Ce scalaire est appelé déterminant de la matrice
(

a b
c d

)
.

Nous généraliserons ce résultat dans la suite du cours d’Algèbre.

3.2. Opérations élémentaires sur les matrices

On peut généraliser les opérations élémentaires définies sur les lignes d’un système linéaire aux lignes
et aux colonnes d’une matrice A ∈Mn,p (K). En effet, la combinaison linéaire Li +λL j de deux lignes
de A (resp. Ci +λC j de deux colonnes de A) a un sens puisque ces lignes appartiennent à M1,p (K)
(resp. à Mn,1(K)). Nous reprendrons les notations employées pour les systèmes linéaires.

Définition 5.23. Matrices équivalentes

Pour (A,B) ∈Mn,p (K)2, on écrira respectivement

A ∼
L

B , A ∼
C

B et A ∼ B

si B se déduit de A par un nombre fini d’opéra-
tions élémentaires sur les lignes, sur les colonnes,
sur les lignes et les colonnes. On dit alors que A
et B sont équivalentes par lignes, par colonnes ou
équivalentes dans le dernier cas.

−2 1 1
1 −2 1
1 1 −2


 ∼

L

−2 1 1
1 −2 1
0 3 −3


 L3 ← L3 −L2

−2 1 1
1 −2 1
1 1 −2


 ∼

C

−2 1 2
1 −2 −1
1 1 −1


 C3 ← C3 +C2

−2 1 1
1 −2 1
1 1 −2


 ∼

1 1 −1
1 −2 −1
−2 1 2


 C3 ← C3 +C2

L1 ↔ L3

Définition 5.24. Matrices élémentaires

Soit n ∈N∗ et (i , j ) ∈ �1,n�2.

Dans le cas où i ̸= j , on note Pi , j la matrice obtenue à partir de In en effectuant l’opération
Li ↔ L j .

Pour λ ∈K∗, on note Di (λ) la matrice obtenue à partir de In en effectuant l’opération Li ← λLi .

LLG . HX 6 16



2025-2026 Laurent Kaczmarek

Lorsque i ̸= j et pour λ ∈ K, on note Ti , j (λ) la matrice obtenue à partir de In en effectuant
l’opération du type Li ← Li +λL j .

Les matrices des trois types précédents sont appelées matrices élémentaires de Mn(K).

Ces matrices sont qualifiées de matrices de permutation, de dilatation et de transposition.

Pour 1⩽ i < j ⩽ n et un scalaire λ, les matrices Pi , j , Di (λ) et Ti , j (λ) s’écrivent respectivement :

1

1
0 1

1

1
1 0

1

1





i

j

i j

1

1
10

1

1
01

1

1

1

1
λ

1

1




i

i

1

1
λ

1

1

1

1 λ

1




i

j

i j

1

1 λ

1

1

Il faut retenir qu’effectuer une opération de pivot sur les lignes d’une matrice revient à la multiplier à
gauche par un de ces trois types de matrices élémentaires.

Proposition 5.25. Traductions matricielles des opérations élémentaires

Soit A ∈Mn,p (K).

a. Permutation : Pi , j A est la matrice obtenue après l’opération Li ↔ L j (avec i ̸= j ) sur A.

b. Dilatation : Di (λ)A est la matrice obtenue après l’opération Li ← λLi (avec λ ∈K∗) sur A.

c. Transvection : Ti , j (λ)A est la matrice après l’opération Li ← Li +λL j (avec i ̸= j ) sur A.

De plus, sous les hypothèses indiquées ci-dessus, les matrices Pi , j , Di (λ) et Ti , j (λ) sont inversibles
et d’inverses respectives :

Pi , j , Di

(
1

λ

)
et Ti , j (−λ)

Ainsi, sans surprise, une matrice élémentaire est inversible et son inverse est la matrice de l’opération
« inverse », i.e. celle qui défait la modification effectuée. Comme dans le cas des opérations sur les
lignes, on vérifie que si A ∈Mn,p (K) alors :

• la matrice obtenue à partir A par l’opération Ci ↔ C j (avec i ̸= j ) est la matrice APi , j ;

• la matrice obtenue à partir A par l’opération Ci ← λCi (avec λ ∈K∗) est la matrice ADi (λ) ;

• la matrice obtenue à partir A par l’opération Ci ← Ci +λC j (avec i ̸= j ) est la matrice AT j ,i (λ).

L’algorithme du pivot, généralisé aux lignes d’une matrice, aboutit à la proposition suivante.
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Proposition 5.26. Echelonnement d’une matrice carrée

∀A ∈Mn(K) , ∃(λ1, . . . ,λn) ∈Kn , A ∼
L

λ1 ⋆ ⋆

0
⋆

0 0 λn


 (le symbole ⋆ désignant

des coefficients arbitraires)

Cette proposition, jointe à la suivante, nous offre un algorithme basé sur celui du pivot pour détermi-
ner l’inversibilité d’une matrice carrée et calculer son inverse le cas échéant.

Proposition 5.27. Caractérisation des matrices inversibles

Soit A ∈Mn(K).

a. Soit B telle que A ∼ B. La matrice A est inversible si et seulement si B est inversible.

b. Soit (λ1, . . . ,λn) ∈Kn . On a que

λ1 ⋆ ⋆

0
⋆

0 0 λn


 est inversible si et seulement si ∀i ∈ �1,n� , λi ̸= 0

c. Une matrice de Mn(K) est inversible si et seulement si on peut la transformer en In au moyen
d’un nombre fini d’opérations élémentaires successives sur les lignes.

d. Une matrice de Mn(K) est inversible si et seulement elle est produit de matrices d’opérations
élémentaires.

Le b. vaut aussi pour des opérations sur les colonnes.

Par exemple :

A :=
−2 1 1
1 −2 1
1 1 −2


 ∼

L

1 1 −2
1 −2 1
−2 1 1


 ∼

L

1 0 0
0 −3 3
0 3 −3


 ∼

L

1 0 0
0 −3 3
0 0 0


 par


L2 ↔ L3

L2 ← L2 −L1

L3 ← L3 +2L1

L3 ← L3 +L2

Comme la matrice
(

1 0 0
0 −3 3
0 0 0

)
est triangulaire supérieure avec un zéro sur la diagonale, elle n’est pas

inversible donc A non plus par la proposition précédente.

Considérons une matrice M inversible et O1, . . ., Om les matrices élémentaires codant une séquence
finie d’opérations de pivot sur les lignes permettant de transformer M en In . Par la proposition 3.2, on
a donc

Om · · ·O1M = In

On en déduit que M−1 = InM−1 = Om · · ·O1MM−1 = Om · · ·O1. Comme M−1 = Om · · ·O1In , on obtient
M−1 en effectuant la même séquence d’opérations de pivot sur les lignes de In .
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Par exemple :

M :=
1 1 1
1 2 1
1 1 2


 ∼

L

1 1 1
0 1 0
0 0 1


 ∼

L

1 0 0
0 1 0
0 0 1


 par

{
L2 ← L2 −L1

L3 ← L3 −L1
puis

{
L1 ← L1 −L3

L1 ← L1 −L2

En effectuant les mêmes opérations à I3, on en déduit M−1 :

1 0 0
0 1 0
0 0 1


 ∼

L

1 0 0
−1 1 0
−1 0 1


 ∼

L

3 −1 −1
−1 1 0
−1 0 1


 d’où M−1 =

3 −1 −1
−1 1 0
−1 0 1




On peut bien-sûr aussi procéder par des opérations sur les colonnes, mais il ne faut en aucun cas
mélanger des opérations en lignes et en colonnes.

Le lecteur s’entraînera à ce type de calcul grâce au test
(
E5.5

)
.

4. Quelques applications des systèmes linéaires

Outre leur indéniable intérêt historique et académique comme introduction à une forme d’algèbre
plus abstraite, les systèmes linéaires ont principalement deux cadres d’applications :

La résolution exacte de problèmes d’algèbre linéaire en dimension finie : nous reviendrons en dé-
tail sur ce point mais le lecteur connaît déjà le cadre de la géométrie euclidienne du plan et de l’es-
pace ; une fois un repère choisi, les systèmes linéaires apparaissent naturellement lors des études
d’intersection.

La résolution approchée de problèmes en dimension infinie ou de problèmes non-linéaires : cet
aspect est beaucoup plus récent que le précédent et s’est beaucoup développé depuis l’avénement
de l’informatique et de l’analyse numérique ; nous donnerons un exemple plus bas et le lecteur est
renvoyé au cours d’informatique pour de plus amples développements.

4.1. Géométrie du plan, de l’espace et au-delà

Position relative de deux droites du plan

D

D ′

Considérons un système de deux équations à deux inconnues
réelles :

E :

{
ax +by = c

a′x +b′y = c ′

On suppose le plan muni d’un repère orthonormal (O,e1,e2). No-
tons respectivement D et D ′ les droites d’équations ax +by = c et
a′x +b′y = c ′ alors les solutions de E correspondent aux coordon-
nées des points d’intersection des droites D et D ′.

Ainsi :

si les triplets (a,b,c) et (a′,b′,c ′) sont proportionnels alors les droites D et D ′ sont confondues et il
y a une infinité de solutions;
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si les triplets (a,b,c) et (a′,b′,c ′) ne sont pas proportionnels mais que les couples (a,b) et (a′,b′) le
sont alors les droites D et D ′ sont parallèles et distinctes et il n’y a pas de solution;

si les couples (a,b) et (a′,b′) ne sont pas proportionnels alors les droites D et D ′ sont sécantes et il
y a donc une unique solution au système.

Finalement, pour que E admette une unique solution, il faut et il suffit que ab′−a′b ̸= 0 d’où l’équi-
valence :

E admet une unique solution ⇐⇒
∣∣∣∣∣ a b

a′ b′

∣∣∣∣∣ ̸= 0

Position relative de deux plans de l’espace

Considérons maintenant un système de deux équations à trois inconnues réelles :

E :

{
ax +by + cz = d

a′x +b′y + c ′z = d ′

On suppose l’espace muni d’un repère orthonormal (O,e1,e2,e3) et on note respectivement P et P ′
les plans d’équations ax+by+cz = d et a′x+b′y+c ′z = d ′ alors les solutions de E correspondent aux
coordonnées des points d’intersection des plans P et P ′.

Tout d’abord, si les quadruplets (a,b,c,d) et (a′,b′,c ′,d ′) sont proportionnels alors les deux plans
sont confondus donc le système admet une infinité de solutions.

Supposons que ces quadruplets ne sont pas proportionnels. L’intersection de P et P ′ est alors
soit vide (lorsque P et P′ sont parallèles non confondus), soit une droite (lorsque P et P ′ ne sont
pas parallèles). Cela signifie que le système :{

ax +by + cz = d

a′x +b′y + c ′z = d ′

n’admet pas de solutions (cas des plans parallèles) ou bien en admet une infinité (cas des plans
non parallèles).

4.2. Utilisation en analyse numérique

La température (x, y, t ) 7→ T(x, y, t ) d’un milieu bidimensionnel 2 soumis à une source de chaleur est
régie par l’équation suivante, dite de la chaleur 3 :

∂T

∂t
= κ∆T+S = κ

(
∂2T

∂x2
+ ∂2T

∂y2

)
+S

où la fonction S modélise la source de chaleur.

Si l’on s’intéresse au régime stationnaire, ie à une solution φ n’évoluant plus au cours du temps, on
obtient l’équation :

κ

(
∂2φ

∂x2
+ ∂2φ

∂y2

)
=−S

Ne disposant pas en général d’une solution explicite, on cherche pour une solution approchée en
discrétisant l’espace. Par exemple si (x, y) ∈ [0,1]2, on découpe le carré [0,1]2 en un malliage de n2

2. Les deux premières variables sont spaciales, la trosième est temporelle.
3. L’opérateur ∆ est appelé laplacien et apparaît dans de nombreuses équations de la physique (chaleur, ondes, etc).
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carrés élémentaires de même surface. Lorsque n est grand, la température sur le carré en position
(i , j ) est à peu près constante et notée φi , j .
On note xi , j = (i /n, j /n). La formule de Taylor permet
d’écrire que

φ(i +1, j ) ≃ φ(i , j )+ 1

n

∂φ

∂x
(xi , j )+ 1

2n2

∂2φ

∂x2
(xi , j )

φ(i −1, j ) ≃ φ(i , j )− 1

n

∂φ

∂x
(xi , j )+ 1

2n2

∂2φ

∂x2
(xi , j )

En additionnant ces deux « égalités », on obtient donc une
approximation de la dérivée seconde partielle deφpar rap-
port à la première variable :

∂2φ

∂x2
(xi , j ) ≃ n2 (

φi+1, j −2φi , j +φi−1, j
)

température ≃φi , j

j

i

En procédant de même pour approcher la dérivée seconde par rapport à la seconde variable, on ob-
tient une linéarisation de l’équation initiale :

κn2 (
φi−1, j −2φi , j +φi+1, j +φi , j−1 −2φi , j +φi , j+1

)=−Si , j

On obtient un système linéaire d’inconnues
φi , j qui peut être résolu en ajoutant quelques
équations représentant les conditions aux
bords du carrré.

On peut prouver que, lorsque n tend vers l’in-
fini, la distribution de temptératureφi , j obte-
nue est une bonne approximation de la solu-
tion exacte φ.

En adoptant une convention de colorisation,
on peut visualiser les approximations obte-
nues en faisant varier n afin d’améliorer la ré-
solution.
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5. Tests

5.1. 4 �

On considère dans Mn(R) les matrices A = (ai , j )1⩽i , j⩽n , et B = (bi , j )1⩽i , j⩽n définies par ai , j = i + j et
bi , j = i − j . Calculer le terme général des matrices C = A−B et D = AB.

5.2. 4 �

On considère les deux matrices A :=
(

1 0 0
0 0 1
0 1 0

)
et B :=

(
0 0 1
1 0 0
0 1 0

)
.

a. Calculer A2, B2 et B3. En déduire An et Bn pour tout entier n ⩾ 1.

b. Calculer AB, AB2, BA et B2A.

5.3. 4 �

Soit A et B dans Mn(K) et λ ∈K tels que A = λIn +B. Calculer λ en fonction de A, B et n.

5.4. 4 �

Pour tout a ∈R on note Sa l’ensemble de solutions du système suivant.
−x + 2y + z = 2

ax + 3y − z = 3

5x − 8y − 9z = −9

Pour quels a ∈R est-ce que Sa est vide ? contient un unique élément ? une infinité ?

5.5. 4 �

Soit n ∈N∗. Prouver l’inversibilité et calculer l’inverse des matrices suivantes :

a.
(

1 0 1
2 −1 1−1 1 −1

)
; b.

(
1 1 −1
2 0 1
2 1 −1

)
; c.

(
2 0 1−1 1 1
1 0 −1

)
; d.

(2 1 1 3
1 0 −1 0
0 2 1 1
4 3 2 4

)
.
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6. Solutions

5.1. ; �

Notons

C = (ci , j )1⩽i , j⩽n et D = (di , j )1⩽i , j⩽n

Calcul de C : pour tous 1⩽ i , j ⩽ n, on a

ci , j = ai , j −bi , j = 2 j

Calcul de D : pour tous 1⩽ i , j ⩽ n, on a

di , j =
n∑

k =1
ai ,k bk, j =

n∑
k =1

(i +k)(k − j )

= (i − j )
n∑

k =1
k +

n∑
k =1

k2 − i j
n∑

k =1
1

= (i − j )
n(n +1)

2
+ n(n +1)(2n +1)

6
−ni j

5.2. ; �

a. On a A2 = I3, B2 =
(

0 1 0
0 0 1
1 0 0

)
et B3 = I3. On en

déduit les calculs suivants :

Puissances de A : si n est pair An = I3, si-
non An = A.

Puissances de B : si n ≡ 0[3], Bn = I3 ; si
n ≡ 1[3], Bn = B; si n ≡ 2[3], Bn = B2.

b. On a

AB =
(

0 0 1
0 1 0
1 0 0

)
, BA =

(
0 1 0
1 0 0
0 0 1

)
puis AB2 =

(
0 1 0
1 0 0
0 0 1

)
et B2A =

(
0 0 1
0 1 0
1 0 0

)
.

5.3. ; �

Par linéarité de la trace,

tr A = nλ+ tr B

d’où λ= tr A− tr B

n
·

5.4. ; �

On applique la méthode du pivot de Gauss. En
notant E ce système, on a

E ⇐⇒


−x +2y + z = 2

ax +3y − z = 3

5x −8y −9z = −9

⇐⇒


−x +2y + z = 2

(3+2a)y + (a −1)z = 3+2a

2y −4z = 1

⇐⇒


−x +2y + z = 2

2y −4z = 1

(3+2a)y + (a −1)z = 3+2a

⇐⇒


−x +2y + z = 2

2y −4z = 1

(5a +5)z = 3
2 +a

Le système de l’énoncé est donc équivalent au
système 

−x +2y + z = 2

2y −4z = 1

5(a +1)z = 3
2 +a

Si a =−1 la dernière ligne se lit 0 = 1
2 et donc

S−1 =∅.

Si a ̸= −1 on résout en remontant du bas
vers le haut et on trouve une solution unique
(dont le calcul n’est pas demandé).

Ainsi Sa n’est jamais un ensemble infini.

5.5. ; �

On applique à chaque fois la méthode du pivot
en effectuant les opérations sur la matrice iden-
tité en parallèle.

a. On a (
1 0 1
2 −1 1−1 1 −1

) (
1 0 0
0 1 0
0 0 1

)
par L2 ← L2 −2L1 et L3 ← L3 +L1,(

1 0 1
0 −1 −1
0 1 0

) (
1 0 0−2 1 0
1 0 1

)
puis, en effectuant L2 ↔ L3,(

1 0 1
0 1 0
0 −1 −1

) (
1 0 0
1 0 1−2 1 1

)
continuons par L3 ↔−(L3 ← L3 +L2),
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(
1 0 1
0 1 0
0 0 1

) (
1 0 0
1 0 1
1 −1 −1

)
enfin, par L1 ↔ L1 −L3,(

1 0 0
0 1 0
0 0 1

) (
0 1 1
1 0 1
1 −1 −1

)
La matrice A est donc inversible d’inverse

A−1 =
(

0 1 1
1 0 1
1 −1 −1

)
b. On a (

1 1 −1
2 0 1
2 1 −1

) (
1 0 0
0 1 0
0 0 1

)
par L2 ← L2 −2L1 et L3 ← L3 −2L1,(

1 1 −1
0 −2 3
0 −1 1

) (
1 0 0−2 1 0−2 0 1

)
puis, en effectuant L2 ↔−L3 et L3 ← L2,(

1 1 −1
0 1 −1
0 −2 3

) (
1 0 0−2 0 1−2 1 0

)
continuons par L3 ↔ L3 ← L3 +2L2,(

1 1 −1
0 1 −1
0 0 1

) (
1 0 0
2 0 −1
2 1 −2

)
puis, par L2 ↔ L2 +L3 et L1 ↔ L1 +L3,(

1 1 0
0 1 0
0 0 1

) (
3 1 −2
4 1 −3
2 1 −2

)
enfin, par L2 ↔ L1 ↔ L1 −L2,(

1 0 0
0 1 0
0 0 1

) (−1 0 1
4 1 −3
2 1 −2

)
La matrice B est donc inversible d’inverse

B−1 =
(−1 0 1

4 1 −3
2 1 −2

)
c. On a (

2 0 1−1 1 1
1 0 −1

) (
1 0 0
0 1 0
0 0 1

)
et, par l’opération L1 ↔ L3,(

1 0 −1−1 1 1
2 0 1

) (
0 0 1
0 1 0
1 0 0

)
puis, en effectuant les opérations L2 ↔ L2 +
L1 et L3 ← (L3 −2L1)/3,(

1 0 −1
0 1 0
0 0 1

) (
0 0 1
0 1 1

1/3 0 −2/3

)
enfin, par L1 ↔ L1 +L3,(

1 0 0
0 1 0
0 0 1

) (
1/3 0 1/3

0 1 1
1/3 0 −2/3

)
La matrice C est donc inversible d’inverse

C−1 =
(

1/3 0 1/3
0 1 1

1/3 0 −2/3

)

d. On a (2 1 1 3
1 0 −1 0
0 2 1 1
4 3 2 4

) (1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

)
et, par l’opération L1 ↔ L2,(1 0 −1 0

2 1 1 3
0 2 1 1
4 3 2 4

) (0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

)
puis L2 ← L2 −2L1 et L4 ← L4 −4L1,(1 0 −1 0

0 1 3 3
0 2 1 1
0 3 6 4

) (0 1 0 0
1 −2 0 0
0 0 1 0
0 −4 0 1

)
et, par L4 ← L4 − (L2 +L3),(1 0 −1 0

0 1 3 3
0 2 1 1
0 0 2 0

) ( 0 1 0 0
1 −2 0 0
0 0 1 0−1 −2 −1 1

)
continuons par les opérations L4 ← L4/2 et
L3 ←−(L3 −2L2)/5,(1 0 −1 0

0 1 3 3
0 0 1 1
0 0 1 0

) ( 0 1 0 0
1 −2 0 0

2/5 −4/5 −1/5 0
−1/2 −1 −1/2 1/2

)
puis par L3 ↔ L4,(1 0 −1 0

0 1 3 3
0 0 1 0
0 0 1 1

) ( 0 1 0 0
1 −2 0 0

−1/2 −1 −1/2 1/2
2/5 −4/5 −1/5 0

)
effectuons L4 ← L4 −L3,(1 0 −1 0

0 1 3 3
0 0 1 0
0 0 0 1

) ( 0 1 0 0
1 −2 0 0

−1/2 −1 −1/2 1/2
9/10 1/5 3/10 −1/2

)
puis L2 ← L2 −3(L3 +L4),(1 0 −1 0

0 1 0 0
0 0 1 0
0 0 0 1

) ( 0 1 0 0
−1/5 2/5 3/5 0
−1/2 −1 −1/2 1/2
9/10 1/5 3/10 −1/2

)
et enfin L1 ← L1 +L3,(1 0 0 0

0 1 0 0
0 0 1 0
0 0 0 1

) (−1/2 0 −1/2 1/2
−1/5 2/5 3/5 0
−1/2 −1 −1/2 1/2
9/10 1/5 3/10 −1/2

)
La matrice D est donc inversible d’inverse

D−1 =
(−1/2 0 −1/2 1/2
−1/5 2/5 3/5 0
−1/2 −1 −1/2 1/2
9/10 1/5 3/10 −1/2

)
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