
Ù ALG 6 Dénombrement

La combinatoire s’intéresse aux méthodes permettant de compter les éléments
dans des ensembles finis (combinatoire énumérative ou analyse combinatoire) et
à la recherche des optima dans les configurations ainsi qu’à leur existence (com-
binatoire extrémale).

Troupeau de moutons dans le Nivernais, Rosa Bonheur
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L A combinatoire remonte à l’Antiquité : Plutarque rapporte ainsi un débat entre Chrysippe et
Hipparque sur le nombre de façons de combiner dix propositions, le résultat n’ayant été com-
pris qu’au XXe siècle.

Parmi, les autres précurseurs, on peut citer Bha-skara II au XIIe
siècle (nombre de choix de p éléments parmi n), Raymond Lulle
au XIIIe siècle, Gersonide au début du XIVe siècle (rapport entre
le nombre d’arrangements et le nombre de combinaison dans le
traité « L’art du calcul »), Michael Stifel au XVIe siècle (première ap-
proche du triangle de Pascal).

Elle se développe de façon significative à partir du XVIIe siècle, en
même temps que le calcul des probabilités avec Blaise Pascal et
Pierre de Fermat.

Initialement, elle avait pour objet la résolution des problèmes de
dénombrement, provenant de l’étude des jeux de hasard. Plus tard,
elle se lia à la théorie des nombres et à la théorie des graphes.

Blaise Pascal

Fermat Lulle Gersonide Stifel

Un traité de Pascal Bha-skara II L’art du calcul
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1. Théorie des cardinaux

L’objectif de cette section est de fonder théoriquement la notion de cardinal.

Tous les énoncés que nous allons y rencontrer sont des évidences. Plus que les démonstrations qu’il
est raisonnable d’admettre en première lecture, nous incitons le lecteur à donner du sens, notamment
à travers des diagrammes sagittaux, aux différentes propositions.

On adopte la convention classique suivante : �1,n� =∅ si n = 0.

1.1. Cardinal d’un ensemble

L’idée de la définition du cardinal est simple, un ensemble E est fini si on peut le mettre en bijection
avec un ensemble de la forme �1,n� où n ∈N.

Définition 6.0. Ensemble fini, cardinal

Soit E un ensemble.

On dit que E dit fini (ou encore de cardinal fini) s’il existe n ∈N et φ : E →�1,n� bijective.

Un tel entier naturel n est alors unique et appelé cardinal de E. On le note card(E), #E ou encore
|E|.
Un ensemble E qui n’est pas fini est dit infini.

E �1,4�

π 1

e 2

0 3

p
2 4

D’un point de vu intuitif, une bijection

φ : E →�1,n�
est tout simplement une numérotation des éléments
de E : à tout élément de E, on associe bijectivement
un élément de �1,n�.

On trouvera ci-contre une illustration des relation

E :=
{
π , e , 0 ,

p
2
}
= 4 et |E| = 4

Pour tout couple d’entiers naturels (n,m) tels que m ⩽ n, les ensembles �1,n� et �m,n� sont finis de
cardinaux respectifs n et n −m +1.

L’unicité dans la définition précédente est une conséquence du lemme suivant, que nous généralise-
rons par la suite.

Lemme 6.1.

Soit (n,m) ∈N2. S’il existe une injection f : �1,n�→ �1,m�, alors n ⩽m.

Le lemme suivant préfigure les opérations sur les cardinaux que nous allons établir dans la suite du
cours.

Lemme 6.2.

Soit E un ensemble fini et x0 ∈ E. L’ensemble E \ {x0} est fini de cardinal |E|−1.

LLG . HX 6 3
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Ce résultat suivant nous offre un nouveau moyen 1 de démontrer l’égalité de deux ensembles lorsqu’ils
sont finis.

Proposition 6.3. Parties d’un ensemble fini

Soit E un ensemble fini et A une partie de E.
Alors A est finie et |A| ⩽ |E|. De plus A = E si et seulement si |A| = |E|.

Prouver que deux ensembles finis sont égaux

Pour montrer que des ensembles finis A et B sont égaux il suffit d’établir que A ⊂ B et que |A| = |B|.

La conclusion de ce premier paragraphe est un théorème qui offre une première méthode de dénom-
brement : pour calculer le cardinal d’un ensemble, il suffit de le mettre en bijection avec un ensemble
de cardinal connu.

Proposition 6.4. Ensemble en bijection avec un ensemble fini

Soit E et F deux ensembles. Si E est fini et il existe φ : E → F bijective, alors F est fini et |E| = |F|.

Par exemple, pour (n,m) ∈N2 tels que m ⩽ n, on déduit de la bijectivité de l’application

�m,n� −→ �1,n −m +1�
x 7−→ x −m +1

que �m,n� admet n −m +1 pour cardinal.

1.2. Applications et cardinaux

D’un point de vue intuitif, l’existence d’une injection de E dans F, ensembles finis, impose l’inégalité
|E| ⩽ |F|. De même, l’existence d’une surjection de E sur F, entraîne l’inégalité |F| ⩽ |E÷ r ver t . On
méditera les schémas suivants.

E
F

u φ

π ν

ψ 0

−3

On ne peut « injecter » E dans F que si |E| ⩽ |F| : il
y a au maximum |F| flèches (par injectivité de f )
or il y en a |E| (par définition d’une application).

E F

φ

7
ν

ln2
γ

π

0

On ne peut construire une surjection E sur F que
si |F| ⩽ |E| : il faut au moins |F| flèches (par sur-
jectivité de f ) or il y en a exactement |E| (par dé-
finition d’une application).

1. Autre que la double inclusion.

LLG . HX 6 4
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D’une manière générale, si f : E → F est injective, alors f réalise une bijection de E sur f 〈E〉.

E
F

u φ

π ν

ψ 0

−3

En effet, la co-restriction f | f 〈E〉 de f à f 〈E〉 est
une bijection de E sur f 〈E〉 ; f 〈E〉 peut se voir
comme « une copie » de E dans F.

E f 〈E〉

u φ

π ν

ψ 0

Proposition 6.5. Injections

Soit E et F deux ensembles finis et f : E → F une injection. On a
∣∣ f 〈E〉 ∣∣ = |E| et donc |E| ⩽ |F|.

Cette proposition permet de formaliser le fameux principe des tiroirs :

Proposition 6.6. Principe des tiroirs
(
E6.1

)
Si n+1 chaussettes sont rangées dans n tiroirs, alors deux chaussettes au moins se retrouvent dans
le même tiroir.

Soit (ai )1⩽i⩽5 cinq réels de [0,1]. On déduit du lemme des
tiroirs l’existence de (i , j ) ∈ �1,5�2 tel que i ̸= j et

0⩽ ai −a j ⩽
1

4

Les quatre tiroirs sont
[
0, 1

4

[
,
[1

4 , 1
2

[
,
[1

2 , 3
4

[
,
[3

4 ,1
]

et les cinq
chaussettes sont les ai .

0 1

1

4

1

2

3

4[ [ [ [ ]

Deux réels à une distance
inférieure à 1

4

Proposition 6.7. Surjections

Si E et F sont deux ensembles finis et f : E → F une application surjective, alors |F| ⩽ |E|.

En particulier, pour une application quelconque f : E → F, on a
∣∣ f 〈E〉∣∣ ⩽ |E| car f réalise une surjec-

tion de E sur f 〈E〉.
Dans le cas d’ensembles finis, on dispose de la caractérisation suivante des bijections.

Proposition 6.8. Bijections

Soit E et F deux ensembles de même cardinal fini et f : E → F. Alors f est bijective si et seulement
si f est injective, si et seulement si f est surjective.

LLG . HX 6 5
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Définition 6.9. Fonction indicatrice d’une partie

Soit E un ensemble et A ∈P(E). On appelle fonction indicatrice de A, notée 1A ou χA, l’application
définie par :

E −→ {
0,1

}
x 7−→

{
1 si x ∈ A

0 si x ̸∈ A

Calcul du cardinal d’une partie par la fonction indicatrice

Pour tout ensemble fini et A ⊂ E, on a

|A| = ∑
x∈E

1A(x) , où 1A est la fonction indicatrice de A

2. Analyse combinatoire

Dans ce paragraphe, nous allons développer des outils permettant de calculer :

des cardinaux d’ensembles construits au moyen d’opérations ;

des cardinaux d’ensembles d’applications 2.

2.1. Intersection, réunion et différence d’ensembles

On ne peut rien dire en général de A∩B si ce n’est
que |A∩B| ⩽ min( |A|, |B|). En revanche, on dis-
pose de la formule « d’inclusion-exclusion » :

|A∪B| = |A|+ |B|− |A∩B| A

A∩B
B

On la comprend facilement : en calculant |A|+ |B|, on compte deux fois les éléments de A∩B, ce que
l’on rectifie en retranchant |A∩B|.

Proposition 6.10. Réunion et différence de deux ensembles finis
(
E6.2

)
Pour tous ensembles finis E et F :

a. Si E et F sont disjointes, alors E∪F est fini et |E∪F| = |E|+ |F| ;
b. E \ F est fini et |E \ F| = |E|− |E∩F| ;
c. Si F ⊂ E, alors ∁EF est fini et

∣∣∁EF
∣∣ = |E|− |F| ;

d. E∪F est fini et |E∪F| = |E|+ |F|− |E∩F|.

On pourra aborder ici le test
(
E6.3

)
. On généralise sans peine à une réunion finie d’ensembles dis-

joints.

2. Par exemple FE .

LLG . HX 6 6
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Proposition 6.11. Extension à une r éunion disjointe finie
(
E6.4

)
Pour des ensembles A1, . . ., An deux à deux disjoints, on a

∣∣∣∣∣ n⊔
i=1

Ai

∣∣∣∣∣ = n∑
i=1

|Ai |.

En particulier, si M est une partition d’un ensemble fini E, alors |E| = ∑
A∈M

|A|.

La formule d’inclusion-exclusion admet une généralisation intéressante mais hors programme. Com-
mençons par le cas de trois ensembles finis A, B et C.

A

C

B
On trouve

|A∪B∪C| = |A|+ |B|+ |C|− |A∩B|− |B∩C|− |C∩A|+ |A∩B∩C|
En calculant |A|+|B|+|C|, on compte deux fois les éléments de A∩B,
de B∩C et de C∩A, et après avoir retrancher |A∩B|, |B∩C| et |C∩A|,
on a retrancher une fois de trop les éléments de A∩B∩C.

Proposition 6.12. Formule d’inclusion-exclusion, du crible ou encore de Poincaré

Pour des ensembles finis A1, . . . , Am , on a∣∣∣∣∣ m⋃
i=1

Ai

∣∣∣∣∣ = m∑
k=1

(−1)k−1
∑

I⊂�1,m�
|I|=k

∣∣∣∣∣⋂i∈I
Ai

∣∣∣∣∣ = m∑
k=1

(−1)k−1
∑

1⩽i1<···<ik⩽m

∣∣∣∣∣ k⋂
j=1

Ai j

∣∣∣∣∣

2.2. Le lemme des bergers

Le théorème précédent admet un cas particulier très important connu sous le nom lemme des
bergers. Il s’agit d’un outil fondamental pour dénombrer de façon rigoureuse mais moins formelle
qu’avec les bijections.

Lemme 6.13. des Bergers

Pour des ensembles A1, . . ., An deux à deux disjoints de même cardinal p, on a

∣∣∣∣∣ n⊔
i=1

Ai

∣∣∣∣∣= np.

L’appellation « lemme des bergers » mérite une petite explication : pour compter le nombre de pattes
de son troupeau, un berger peut se contenter de multiplier par quatre le nombre de moutons 3.

Nous allons l’illustrer par le dénombrement des injections de �1,2� dans �1,4�. Pour construire une
telle injection f : �1,2� → �1,4�, on commence par choisir f (1) dans �1,4� (quatre choix possibles).
Pour chacun de ces choix, il faut ensuite choisir f (2) parmi les 3 valeurs restantes (3 choix possibles).
Au total, on obtient 4×3. Cette construction d’une injection de �1,2� dans �1,4� se visualise bien au
moyen d’un arbre :

3. Ici n est le nombre de moutons et p = 4.

LLG . HX 6 7
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f (1) = 1

f (1) = 2

f (1) = 3

f (1) = 4

f (2) = 2
f (2) = 3
f (2) = 4
f (2) = 1
f (2) = 3
f (2) = 4
f (2) = 1
f (2) = 2
f (2) = 4
f (2) = 1
f (2) = 2
f (2) = 3

Choix de f (1) Choix de f (2)

Un arbre à 4×3 feuilles

C’est bien le lemme des bergers que l’on applique ici. Pour i ∈ �1,4�, on note Ai l’ensemble des injec-
tions de �1,2� dans �1,4� telles que f (1) = i . On a ∀i ∈ �1,4�, #Ai = 3. Ainsi |A1 ∪A2 ∪A3 ∪A4| = 4×3
et A1∪A2∪A3∪A4 est l’ensemble des injections de �1,2� dans �1,4�. Bien-sûr, dans la pratique, on ne
formalise pas nos raisonnements en revenant à la forme ensembliste du lemme du bergers et on ne
trace pas des arbres.

Dénombrement par lemme des bergers
(
E6.5

)
On pourra appliquer le lemme des bergers pour dénombrer des objets à partir d’une construction
en plusieurs étapes successives avec le même nombre de choix à chaque fois.

2.3. Produit cartésien et p-listes

L’interprétation géométrique d’un couple (a,b) permet de deviner
que, si A et B sont finis, alors A×B aussi et

|A×B| = |A| × |B|
Voir l’exemple de �1,7�×�1,5� ci-contre.

1 2 3 4 5 6 7

1
2
3
4
5

Proposition 6.14. Produit cartésien

a. Si E et F deux ensembles finis, alors E×F est fini et |E×F| = |E| × |F|.

b. Si A1, . . . , Am sont des ensembles finis, alors
m∏

i=1
Ai est fini et

∣∣∣∣∣ m∏
i=1

Ai

∣∣∣∣∣ = m∏
i=1

|Ai |.

c. Si E est fini et p ∈N, alors Ep est fini et
∣∣Ep

∣∣ = |E|p .

LLG . HX 6 8
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Définition 6.15. Listes, p-listes

Soient E un ensemble et p ∈N∗. On appelle p-liste (ou p-uplet) de E tout élément de Ep .

Dans une liste, l’ordre des éléments est important contrairement aux ensembles. Ainsi, (5,2,1) ̸=
(2,5,1). Un même élément peut figurer plusieurs fois dans une liste. Par exemple, (1,1,2,3) est une
4-liste de l’ensemble {1,2,3}.

Modélisation d’un tirage avec remise

Les listes sont utilisées pour modéliser des tirages successifs avec remise dans une urne ou un jeu
de cartes – avec remise car les répétitions sont autorisées.

On dénombre par exemple 324 tirages avec remise possibles de 4 cartes parmi 32.

Le calcul du cardinal de FE en fonction de ceux de E et F est une application de ce qui précède. C’est
d’ailleurs cette propriété qui est à l’origine de la notation FE.

Proposition 6.16. Applications entre deux ensembles finis

Si E et F sont deux ensembles finis, alors FE est fini et
∣∣FE

∣∣ = |F||E|.

2.4. Injections entre ensembles finis et arrangements

Soit n et p deux entiers naturels tels que 1 ⩽ p ⩽ n. Une injection de �1, p� dans �1,n� se construit en
choisissant f (1) dans �1,n� (n possibilités), puis en choisissant f (2) (n−1 possibilités car f (1) est déjà
choisi), puis en choisissant f (3) (n − 2 possibilités car f (1) et f (2) sont déjà choisis), etc. On trouve
finalement

n(n −1) · · · (n −p +1) = n!

(n −p)!
Ce type de raisonnement consiste à appliquer en cascade le lemme des bergers.

Les arrangements sont aux listes ce que les injections sont aux applications.

Définition 6.17. Arrangements

Soit E un ensemble et p ∈N∗. On appelle p-arrangement de E toute p-liste de E formée d’éléments
distincts de E.

Proposition 6.18. Injections, bijections et permutations
(
E6.6

)
Soit E et F deux ensembles finis de cardinaux respectifs p et n. Le nombre d’injections de E dans F
est égal à :  0 si n < p

n!

(n −p)!
sinon

C’est ausi le nombre de p-arrangement de E.

Les arrangements sont importants car ils modélisent l’une des situations typiques de tirage.

LLG . HX 6 9
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Arrangements et modélisation

Les p-arrangements de E ensemble à n éléments sont utilisés pour modéliser :

des tirages successifs sans remise dans une urne ou un jeu de cartes – sans remise car les répé-
titions sont interdites.

le choix de p objets parmi n avec ordre et sans répétition.

Par exemple, on compte 32×31×30×29 tirages sans remise possibles de 4 cartes parmi 32.

Définition 6.19. Permutation

Soit E un ensemble. On appelle permutation de E toute bijection de E sur E. On note S (E) ou
encore S(E) l’ensemble des permutations de E.

Proposition 6.20. Bijections, permutations

Soient E et F des ensembles finis de même cardinal n.

a. Le nombre de bijections de E dans F est égal à n!.

b. En particulier, |S(E)| = n!.

2.5. Parties d’un ensemble et combinaisons

Proposition 6.21. Ensemble des parties d’un ensemble

Si E est un ensemble fini, alors P(E) est fini et |P(E)| = 2|E|.

Définition 6.21. Combinaisons

Soit E un ensemble fini de cardinal n et k ∈N.

On appelle k-combinaison de E toute partie de E de cardinal k.

On note

(
n

k

)
le nombre de k-combinaison de E.

La différence entre k-arrangements et k-combinaisons de E est que les premiers sont ordonnés
contrairement aux seconds. Pour construire un k-arrangement de E, on commence par :

On choisit sans ordre les éléments qui vont y figurer : il y a

(
n

k

)
possibilités ;

puis on ordonne ces k éléments : il y a k ! permutations possibles de ces éléments.

On conclut donc par le lemme des bergers que

(
n

k

)
k ! = n!

(n −k)!
·

LLG . HX 6 10
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Proposition 6.22. Parties à k éléments

Soit E un ensemble, n := |E| et k ∈ �0,n�. Le nombre de k-combinaisons de E vaut

(
n

k

)
= n!

k !(n −k)!
·

Combinaisons et modélisation
(
E6.7

)
Les combinaisons sont utilisées pour modéliser :

Le choix de k objet(s) parmi n sans ordre ni répitition.

Les tirages simultanés dans une urne ou un jeu de cartes.

Voici quelques situations où les combinaisons interviennent.

On compte

(
32

4

)
tirages simultanés de 4 cartes parmi 32.

Le nombre d’anagramme du mot ANAGRAMME est égal à

(
9

3

)(
6

1

)(
5

1

)(
4

2

)(
2

1

)(
1

1

)
= 9!

3!2!
·

Construisons un anagramme de ce mot. On considère l’emplacement des neuf lettres du mot
à construire :

Puis on place successivement les différentes lettres :(
9

3

)
︸︷︷︸

choix des positions des 3 « A » ,

(
6

1

)
︸︷︷︸

du « N » ,

(
5

1

)
︸︷︷︸

du « G » ,

(
4

2

)
︸︷︷︸

des 2 « M » ,

(
2

1

)
︸︷︷︸

du « E » ,

(
1

1

)
︸︷︷︸

du « R »

On conclut par le lemme des bergers.

Pour k ⩽ n, le nombre d’applications strictement croissantes de �1,k� dans �1,n� est égal à

(
n

k

)
.

En effet, définir une telle application revient à choisir k éléments distincts de E sans ordre
((n

k

)
possibilités

)
puis à les ranger dans l’ordre croissant (une seule possibilité).

Le lecteur est renvoyé au cours ALG 3 pour les aspects numériques comme le triangle de Pascal ou
les preuves au moyen de l’expression comme quotient de factorielles. On retiendra les propriétés sui-
vantes :

Proposition 6.23. Propriétés des coefficients binomiaux

a. Pour tout n ∈N et k ∈ �0,n�, on a

(
n

k

)
=

(
n

n −k

)
.
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b. Pascal : pour tout (n,k) ∈N2, on a

(
n +1

k +1

)
=

(
n

k

)
+

(
n

k +1

)
.

c. Vandermonde : pour (p,n,m) ∈N∗,
p∑

k=0

(
n

k

)(
m

p −k

)
=

(
m +n

p

)
en part.

n∑
k=0

(
n

k

)2

=
(

2n

n

)
.

Ces formules peuvent être obtenues par du calcul sur les factorielles mais également par des argu-
ments combinatoires. La méthode est classique et très largement répendue :

Prouver une formule par double comptage
(
E6.8

)
On calcule de deux manières différentes un même cardinal.

Prenons l’exemple du cas particulier de la formule de Vandermonde :
n∑

k=0

(
n

k

)2

=
(

2n

n

)
.

Soit n ∈ N et E un ensemble de cardinal 2n. On dénombre les parties à n éléments de E. Notons
En l’ensemble formé de ces parties. D’après le cours, il y en a

(2n
n

)
. On va compter ces parties d’une

autre façon en partitionnant E en deux ensembles E1 et E2 de cardinal n. Pour k ∈ �0,n�, on note En,k

l’ensemble des parties A de E à n éléments telles que #(A∩E1) = k.

k n −k

E1 E2

A

On a En =
n⊔

k=0
En,k .

On construit A ∈ En,k en choisissant d’abord A∩E1 : il y a
(n

k

)
possi-

bilités ; puis en choisissant A∩E2 : il y a
( n

n−k

)
possibilités. On a donc

#En,k = (n
k

)( n
n−k

)
par le lemme des bergers.

Ainsi

(
2n

n

)
=

∣∣∣∣∣ n⊔
k=0

En,k

∣∣∣∣∣= n∑
k=0

(
n

k

)(
n

n −k

)
=

n∑
k=0

(
n

k

)2

.

Newton démontra la formule du binôme par des arguments combinatoires. Commençons par le cas
où n = 3. En développant (a +b)3 par distributivité, on obtient 23 termes :

(a +b)3 = (a +b)(a +b)(a +b) = aaa +aab +aba +abb +baa +bab +bba +bbb

= a3 +3a2b +3ab2 +b3

Plus généralement, le développement de (a + b)n comporte 2n termes de la forme F1F2 · · ·Fn avec
Fi = a ou b pour tout i ∈ �1,n�. Le nombre de termes F1F2 · · ·Fn où a apparaît k fois est

(n
k

)
(on choisit

les k facteurs Fi valant a parmi les n). Pour un tel terme, on a F1F2 · · ·Fn = ak bn−k . On en déduit la
formule du binôme.

Proposition 6.24. Formule du binôme

Pour tout (a,b,n) ∈C2 ×N, on a (a +b)n =
n∑

k=0

(
n

k

)
ak bn−k .
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3. Les trois grandes stratégies de dénombrement

On peut dégager trois grandes stratégies de dénombrement d’un ensemble E :

mettre en bijection E avec un ensemble de cardinal connu ;

décomposer la construction d’un élément quelconque de E en plusieurs choix élémentaires où l’on
reconnaît une des situations type (listes, combinaisons, etc). Le lemme des bergers et la formule
du cardinal d’une union disjointe permettent de conclure.

rechercher une relation de récurrence.

Nous avons déjà abondamment illustré ces différentes méthodes au travers des démonstrations don-
nées dans le paragraphe d’analyse combinatoire. Dans cette section, nous allons revenir sur ces diffé-
rentes approches de façon plus systématique, en mettant en évidence leurs intérêts et leurs dangers.

Les trois approches seront chacune illustrées par plusieurs situations classiques.

Un conseil pour apprendre à compter

Pour bien compter les éléments d’un ensemble, il est indispensable d’en avoir une représentation
(géométrique ou plus abstraite) au moyen d’objets connus. D’où l’importance des schémas, des
arbres, etc.

3.1. Dénombrer via des bijections

D’un point de vue pratique, pour dénombrer un ensemble F, on réduit le problème au dénombrement
d’un autre ensemble E au moyen d’une modélisation des éléments de F, par exemple par l’intermé-
diaire d’un codage ou d’une représentation. La théorie des cardinaux nous a fourni la proposition 1.1
qui justifie cette approche : il s’agit de mettre en bijection F et E.

Utilisation d’une bijection

Si E est fini et s’il existe φ : E → F bijective, alors F est fini et |E| = |F|. Pour calculer le cardinal d’un
ensemble F, le principe est donc de le mettre en bijection avec un ensemble E de cardinal connu.

Pour un ensemble A quelconque, l’application

φ : P(A) −→ {
0,1

}A

X 7−→ 1X

est bijective. On peut en déduit que, si A est fini, alors le cardinal de P(A) est égal à celui de
{
0,1

}A,
qui vaut 2|A|.

Cependant, dans de nombreux cas, il n’est pas indispensable d’expliciter avec précision la bijection :
en un mot, il ne faut pas formaliser à l’excès.
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u

v

Pour (n,m) ∈ N2, calculons le nombre de chemins du
plan de (0,0) à (n,m), les déplacements s’effectuant ex-
clusivement selon +u ou +v (i.e. on se déplace vers la
droite ou le haut).

Nous avons représenté dans la figure ci-contre deux
exemples de chemins joignant les points (0,0) et (8,6).

Un chemin de (0,0) à (n,m) peut être codé par une liste
de n +m déplacements selon les directions +u ou +v,
où u figure n fois et v m fois.

Par exemple, les chemins rouge et vert sont respectivement codés par les listes :

(v,u,u,v,u,u,v,v,u,v,u,u,u,v ) et (u,u,u,v,v,v,v,v,u,v,u,u,u,u )

On remarque que tous les chemins de (0,0) à (n,m) sont ainsi codés de façon unique. Il suffit donc
de dénombrer les (n+m)-listes comportant n fois u et m fois v. Pour construire une telle liste, il suffit
de choisir les positions des n déplacements u, on complète alors par m déplacement selon v. On
dénombre donc (

n +m

n

)
chemins de (0,0) à (n,m)

Dans cet exemple, nous faisons bien appel à une bijection, celle qui associe à un chemin son code.
Simplement, nous n’insistons pas sur les aspects formels, la bijectivité sous-jacente étant assez évi-
dente.

3.2. Dénombrer au moyen d’une construction

Commençons par un exemple très concret. Tirons au hasard et simultanément 5 cartes d’un jeu clas-
sique de 52 cartes 4. On obtient ce qu’on appelle une main de cinq cartes : cinq cartes distinctes mais
non ordonnées.

On compte
(52

5

)
mains au total.

Dénombrons les mains comprenant exactement un as. Pour construire une telle main, on com-
mence par choisir la couleur de l’as : il y a 4 possibilités. On complète ensuite une choisissant une
main quelconque de 4 cartes parmi les 48 restantes (toutes les cartes sauf les as). On obtient 4

(48
4

)
possibilités par le lemme des bergers.

Intéressons-nous à présent aux mains comprenant au moins un valet.

Il est plus simple de dénombrer le complémentaire, i.e. le nombre de mains sans valets : on
choisit une mains de 5 cartes parmi les 48 cartes qui ne sont pas des valets. On trouve donc

(48
5

)
et finalement (

52

5

)
−

(
48

5

)
On aurait également pu opérer par disjonction de cas. On distingue :

8 Les mains comportant exactement un valet : 4
(48

4

)
(même calcul que pour un seul as).

4. Rappelons qu’un jeu de 52 cartes comporte une carte par couleur (pique, trèfle, cœur et carreau) parmi les treize valeurs suivantes : as, roi, dame,
valet, dix, neuf, huit, sept, six, cinq, quatre, trois et deux.
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8 Les mains comportant exactement deux valets : on choisit ces deux valets sans ordre,
(4

2

)
possibilités ; puis on complète en choisissant une main de 3 cartes parmi les 48 cartes res-
tantes,

(48
3

)
possibilités. On obtient donc

(4
2

)(48
3

)
au total.

8 Les mains comportant exactement trois valets : on obtient de façon analogue
(4

3

)(48
2

)
.

8 Les mains comportant exactement quatre valets : on obtient de même 48.

Le nombre de mains de 5 cartes comportant au moins un as vaut donc aussi :

4

(
48

4

)
+

(
4

2

)(
48

3

)
+

(
4

3

)(
48

2

)
+48

Comme nous le voyons sur cet illustration, exhiber des bijections afin de dénombrer est parfois long et
inutilement formel. Il est souvent plus naturel et efficace de se ramener aux trois cas typiques (listes,
arrangements, combinaisons) au moyen du lemme de bergers ou de disjonctions.

Somme ou produit ?

Pour dénombrer un ensemble A :

Si l’on effectue une disjonction de cas en discriminant les éléments de A selon un critère, alors
on doit sommer les résultats (on a décomposé A en une réunion disjointe de parties).

Si l’on effectue une construction par choix successifs avec le même nombre de possibilités à
chaque étape, alors on doit faire le produit de ces nombres (on applique le lemme des bergers).

Comme nous l’avons vu ci-dessus, on emploie le plus souvent un mélange de ces deux techniques.

Les deux grands types d’erreur en matière de dénombrement sont :

sous-estimer le nombre final en oubliant des cas (le plus souvent dans une disjonction) ;

sur-estimer le nombre final en comptant trop de configurations, i.e. en comptant plusieurs fois
certaines configurations (le plus souvent dans une application incorrecte du lemme des bergers).

Revenons à l’exemple d’une main de 5 cartes comportant au moins un valet. Il est incorrect de choisir
d’abord un valet (4 possibilités) puis de compléter par une main de 4 cartes parmi les 51 restantes.
Certes, en s’y prenant de la sorte, nous allons bien construire toutes les solutions mais pas de façon
unique ! Certaines configurations seront en effet construites en plusieurs exemplaires, par exemple :

4

(
51

4

)
feuilles
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Les mains avec exactement un, deux, trois et quatre valets sont respectivement construites une, deux,
trois et quatre fois. On ne peut donc même pas diviser ce résultat pour obtenir la bonne réponse. En
revanche, comme l’exemple suivant l’illustrera, dans les cas où l’on compte en trop chaque configu-
ration un même nombre de fois, on peut diviser pour conclure. Dans ces cas de figures, le lemme des
bergers s’utilise plutôt sous la forme d’un quotient (c’était le cas pour passer des arrangements aux
combinaisons) : dans ce cadre, on compte à dessein trop de configurations puis on divise le résultat.

Revenons à l’exemple des anagrammes du mot « ANAGRAMME », déjà résolu dans le paragraphe dé-
dié aux combinaisons. Imaginons écrites sur une feuille les 9! permutations des 9 lettres d’« ANA-
GRAMME ». Du fait des lettres identiques « A » et « M », on obtient des doublons. C’est par exemple
le cas d’« ANAGRAMME » obtenu en permutant les deux premiers « A » et « ANAGRAMME » obtenu
en permutant les deux derniers « A ». Il y a donc moins de 9! anagrammes. Cependant, chaque ana-
gramme d’« ANAGRAMME » apparaît le même nombre de fois dans la liste des 9! permutations ini-
tiales : 3!×2! fois par le lemme de bergers (3! pour le nombre de permutation des trois « A », 2! pour le
nombre de permutations des deux « M »). On en déduit le nombre total d’anagrammes :

9!

3!2!

Construire pour dénombrer
(
E6.9

)
Tout dénombrement d’un ensemble A par construction de ses éléments cache une bijection : il
s’agit de générer tous ses éléments en un seul exemplaire. Comme dans le cas des bijections, il
n’est pas nécessaire de justifier la validité du procédé choisi mais il faut expliquer clairement le
mode opératoire.

Le lecteur abordera avec profit les tests
(
E6.10

)
et

(
E6.11

)
.

3.3. Dénombrer par récurrence

On souhaite dénombrer les pavages sans recouvrements
d’un damier 2×n par des dominos 2×1 :

Le damier 2×n

On notera un le nombre de configurations possibles. Quelques exemples pour commencer :

Pour tout n ⩾ 1, notons un le nombre de pavages du damier 2×n. Il est clair que u1 = 1 et u2 = 2. Soit
n ⩾ 3. On s’intéresse aux pavages d’un damier 2×n. Il y en a de deux types :

Ceux qui finissent par : on en dénombre un−1.

Ceux qui finissent par : on en dénombre un−2.

Ainsi, un = un−1 +un−2. Cette relation de récurrence peut ensuite être résolue par les méthodes clas-
siques.
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Dénombrer par récurrence

Il est parfois possible de déterminer une relation de récurrence pour faciliter le dénombrement. Le
plus souvent, il faut effectuer des disjonctions de cas afin de se ramener à des indices strictement
inférieurs.

4. Combinaisons avec répétitions

On veut modéliser le choix de p objets parmi n, sans ordre comme pour les combinaisons, mais avec
la possibilité de prendre plusieurs fois le même élément. Par exemple, les trois-combinaisons avec
répétitions des deu x objets α1 et α2 sont :

[α1,α1,α1] , [α2,α2,α2] , [α1,α1,α2] , [α2,α2,α1]

Attention, la notation entre crochet n’est absolument pas standard. Contrairement aux listes, aux
arrangements ou aux combinaisons, il n’est pas ilmmédiat de définir abstraitement la notion de
k-combinaisons avec répétitions. La définition que nous avons retenue (parmi quelques variables
usuelles) vient de la modélisation d’une trois-combinaison avec répétitions de {α1,α2} par la liste des
« effectifs » (x1, x2) :{

Pour tout i ∈ �1,2�, xi est égal au nombre de fois que l’on choisit αi dans la combinaison

x1 +x2 = 3

Voici les modélisations des quatre combinaisons énumérées ci-dessus :

[α1,α1,α1] → (3,0) , [α2,α2,α2] → (0,3) , [α1,α1,α2] → (2,1) , [α2,α2,α1] → (1,2)

Définition 6.25. k-combinaisons avec répétition

Soit k ∈N et E := {
α1, . . . ,αn : bi g } un ensemble de cardinal n ∈N∗. On appelle k-combinaison avec

répétitions de E toute liste d’entiers naturels (x1, . . . , xn) telle que

x1 +·· ·+xn = k

On note Γk
n le nombre de k-combinaisons de E. On adopte la convention Γk

0 :=
{

1 si k = 0

0 si k ∈N∗

On a bien-sûr Γ0
n = 1 pour tout n ∈N∗, Γk

1 = 1 et Γk
2 = k +1 pour tout k dansN.

Pour calculer Γk
n en fonction de n et k, nous allons proposer deux approches : la première par bijec-

tion, en adoptant une modélisation plus géométrique du problème des k-combinaisons et la seconde
par récurrence.

4.1. Modélisation par billes et bâtons

Considérons le cas des neuf-combinaisons avec répétitons de E = {α1,α2,α3}. On peut se représenter
une neuf-combinaison avec répétitions de la manière suivante. On considère trois urnes : la première
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contient un nombre de billes indiscernables ègal au nombre de α1, la deuxième contient un nombre
de billes indiscernables égal au nombre de α2, de même pour la troisième avec α3.

La neuf-combinaison (4,2,3) correspond à

Il y a autant de neuf-combinaisons avec répétitions qu’il y a de manières de remplir ces trois urnes
avec neuf billes indiscernables. Nous pouvons maintenant procéder à une seconde modélisation : on
représente en ligne les neuf billes et les urnes sont délimitées par deux bâtons. Nous disposons donc
en ligne onze objets de deux types : deux bâtons et neuf billes.

Urne no 1 Urne no 2 Urne no 3

Voici par exemple quelques neuf-combinaisons avec répétitions et leurs modélisations :

(3,3,3) (2,3,4)

(0,1,8) (0,0,9)

Ainsi, l’ensemble des neuf-combinaisons avec répétitions de E est en bijection avec l’ensemble des
onze-listes comportant deux bâtons et neuf billes. On en dénombre finalement

(11
2

)
(on choisit la po-

sition les deux bâtons et on complète par des billes aux autres positions).

Plus généralement, le nombre de k-combinaisons avec répétitions d’un ensemble à n éléments se
ramène aux configurations de k billes à répartir dans n urnes, on trouve donc

Γk
n =

(
k +n −1

n −1

)

Le lecteur pourra approfondir au moyen des tests
(
E6.12

)
et

(
E6.13

)
.

4.2. Stratégie de la récurrence

Fixons k, n dansN∗ et E := {
α1, . . . ,αn

}
de cardinal n.

Nous allons effectuer une disjonction selon le nombre de fois qu’apparaîtαn dans une k-combinaison
avec répétitions de E.

Celui-ci appartient nécessairement à l’intervalle �0,k�.

Fixons i dans �0,k�. Construire une k-combinaison avec répétitions de E où αn apparaît exacte-
ment i fois :
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On se donne une (k − i )-combinaison quelconque de E \ {αn}.

On la complète en ajoutant i exemplaires de αn .

Il y a donc Γk−i
n−1 possibilités.

On en déduit que

Γk
n =

k∑
i=0

Γk−i
n−1 =

k∑
i=0

Γi
n−1 = Γk

n−1 +
k−1∑
i=0

Γi
n−1 = Γk

n−1 +Γk−1
n

Examinons les premiers termes :

Γk
1 = 1, Γk

2 = k +1 =
(

k +1

1

)
, Γk

3 =
k∑

i=0
Γi

2 =
k∑

i=0
(i +1) = (k +1)(k +2)

2
=

(
k +2

2

)

On conjecture que Γk
n = (k+n−1

n−1

)
pour n ∈N∗ et k ∈N. Nous allons procéder par récurrence 5 sur k+n.

La formule est vraie au rang 1 par ce qui précède. Soit m ∈N∗. Supposons la formule vraie au rang m.
Considérons (k,n) ∈N×N∗ tel que k +n = m +1. Si n ⩾ 2, alors on a

Γk
n = Γk

n−1 +Γk−1
n =

(
k +n −2

n −2

)
+

(
k +n −2

n −1

)
=

(
k +n −1

n −1

)
La formule étant également vraie si n = 1, on en déduit le résultat au rang m +1.

5. Par la relation de récurrence trouvée
(
Γk

n = Γk
n−1+Γk−1

n
)
, on voit qu’une récurrence sur k ou n n’est pas adaptée : en revanche, la somme p+q des

deux indices des coefficients Γ
q
p est une variable de récurrence adéquate (elle vaut k +n à gauche et n +k −1 à droite du signe égal).
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5. Tests

6.1. 4 �

On considère cinq points dans [0,2]2.
Montrer qu’il existe deux points situé à une distance inférieure à

p
2.

6.2. 4 �

Soit A, B et C des parties d’un ensemble.

a. Sachant que |A∪B| = 50, |A| = 15 et |A∩B| = 5, calculer |B|.
b. Si |A∪B| = 60 et |A| = 3×|B| = 45, peut-on déduire que A et B sont disjoints ?

c. Si |A∪B| = 60, |A| = 10 et |B \ A| = 50, peut-on déduire que A ⊂ B ?

6.3. 4 �

Soit E un ensemble de cardinal 100, A et B des parties de E tels que #
∣∣∣A∩B

∣∣∣= 60 et |A| = 15. Déterminer
|B \ A|.

6.4. 4 �

Soit E et F deux ensembles finis et f : E → F. Que vaut
∑
y∈F

∣∣ f −1 〈
{y}

〉∣∣ ?

6.5. 4 �

On considère des matrices de M4(R) à coefficients dans {0,1}.

a. Combien existe-t-il de matrices dont chaque ligne contient exactement un coefficient « 1 » ?

b. Combien existe-t-il de matrices dont chaque ligne et chaque colonne contient exactement un
coefficient « 1 » ?

6.6. 4 �

Une télévision privée décide d’opter pour le système de « programmes à péage » en utilisant des dé-
codeurs commandés par des codes à huit chiffres. Calculer le nombre maximal d’abonnés.

6.7. 4 �

A l’issue d’un concours, 160 candidats sont admis dont 70 garçons. Déterminer le nombre de classe-
ments possibles des 10 premiers admis qui contiennent autant de filles que de garçons.

6.8. 4 �

Soit n ∈N. Prouver par un double comptage que
n∑

k=0
k

(
n

k

)
= n2n−1.

On pourra compter les couples (x, A) ∈ �1,n�×P(�1,n�) tels que x ̸∈ A.

6.9. 4 �

À partir d’un alphabet de p lettres, combien de mots de n lettres peut-on former ne contenant jamais
deux lettres identiques consécutives ?
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6.10. 4 �

En France, depuis le 15 avril 2009, les véhicules sont immatriculés à l’aide d’un « numéro » formé d’une
série de deux lettres, suivie d’une série de trois chiffes (de 0 à 9), elle-même suivie d’une série de deux
lettres (par exemple BC 112 DA). Quel est le nombre de numéros d’immatriculation :

a. possibles?

b. constitués de lettres et de chiffres deux à deux distincts ?

c. dont les trois chiffres sont dans l’ordre strictement croissant?

d. qui sont des palindromes (par exemple BC 121 CB)?

e. qui contiennent une seule lettre apparaissant exactement deux fois?

6.11. 4 �

Une association sportive compte dix coureurs de 100 m.

a. Combien peut-on former d’équipes de relais 4× 100 m ? L’ordre dans lequel les coureurs inter-
viennent est à prendre en considération.

b. Soit A l’un des dix coureurs. Combien de ces équipes contiennent le coureur A ?

c. Soit B un autre des dix coureurs. Combien de ces équipes contiennent le coureur A ou le cou-
reur B?

6.12. 4 �

Combien de dominos peut-on former avec des numéros de 1 à 6 ?

6.13. 4 �

Combien dénombre-t-on d’applications croissantes de �1,m� dans �1, p� ?
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6. Solutions

6.1. ; �

On applique le lemme des tiroirs. On découpe
le carré [0,2]2 en quatre sous-carrés (cf. la figure
ci-dessous).

p
2

A

B

L’un au moins des quatre sous-carré contient
deux points A et B et donc AB ⩽

p
2 (longueur

de la diagonale de ce sous-carré).

6.2. ; �

a. |B| = |A∪B|+ |A∩B|− |A| = 50+5−15 = 40.

b. |A∩B| = |A∪B|− |A|− |B| = 60−45−15 = 0.
Donc A∩B = ∅, c’est-à-dire A et B sont dis-
joints.

c. Non. Contre-exemple A = �1,10� et B =
�2,60�.

6.3. ; �

D’après les règles de Morgan A∩B = A∪B. Or{
A,B\A, A∪B,

}
est un recouvrement disjoint de

E, donc |E| = |A|+ |B \ A|+
∣∣∣A∪B

∣∣∣, d’où

|B \ A| = |E|− |A|−
∣∣∣A∪B

∣∣∣= 100−15−60 = 25

6.4. ; �

Comme les éléments de M = {
f −1 〈

{y}
〉

; y ∈ F
}

sont deux à deux disjoints et⋃
A∈M

A = E

on a
∑
y∈F

∣∣ f −1 〈
{y}

〉∣∣= |E|.

6.5. ; �

a. Il y a 4 possibilités pour chaque ligne donc
44 configurations.

b. On construit une telle matrice en choisis-
sant la première ligne : 4 possibilités ; puis la
seconde ligne : 3 possibilités ; puis 2 pour la
troisième ligne et, bien-sûr, une seule pour
la dernière ligne. Il y a donc 4! configura-
tions.

6.6. ; �

Un abonné avec code composé de huit chiffres
différents correspond à une suite de huit
chiffres différents pris parmi les dix chiffres pos-
sibles �0,9�. On reconnaît un 8-arrangement de
�0,9�. Il y a donc 10!/(10−8)! codes composés de
huit chiffres différents.

6.7. ; �

On choisit d’abord les places des 5 garçons et
des 5 filles :

(10
5

)
possibilités. Puis on choisit les

garçons et les filles avec ordre :
(70

5

)
5! et

(90
5

)
5!.

On trouve donc
(10

5

)(70
5

)(90
5

)
5!2.

6.8. ; �

Notons A l’ensemble des couples (x, A) ∈
�1,n�×P(�1,n�) tels que x ̸∈ A.

Il y a n choix possibles pour x dans �1,n�.
Puis on choisit une partie de �1,n� \ {x}, il y
a 2n−1 possibilités. Ainsi #A = n2n−1.

On choisit d’abord le cardinal de A : on fixe
k ∈ �0,n�. On choisit ensuite les éléments de
A :

(n
k

)
possibilités. Et finalement, on choisit

x ∈ A : n −k possibilités. Ainsi,

n2n−1 =
n∑

k=0
(n −k)

(
n

k

)
=

n∑
k=0

k

(
n

k

)
par un changement de variable évident.

6.9. ; �

On choisit d’abord la première lettre : p possi-
bilités. À partir de la deuxième lettre, il y a p −1
choix possibles (tout sauf la lettre précédente).
Ainsi, on a donc p(p −1)n−1 mots possibles.

6.10. ; �
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a. Il faut choisir les quatre lettres avec ordre,
puis la série de trois chiffres entre 0 et 9 : il y
a 264 ×1000 immatriculations possibles.

b. Il faut choisir 4 lettres distinctes avec ordre,
puis 3 chiffres distincts : on trouve 26×25×
24 × 23 × 10 × 9 × 8 immatriculations pos-
sibles.

c. Il faut choisir 4 lettres avec ordre, puis 3
chiffres distincts rangés dans l’ordre crois-
sant : on dénombre donc 264×(10

3

)
immatri-

culations possibles.

d. On choisit d’abord les deux premières
lettres, puis les deux premiers chiffres : il y
a 262 ×102 immatriculations possibles.

e. On choisit d’abord l’unique lettre apparais-
sant exactement deux fois, la position de
ces deux lettres identiques, les deux autres
lettres distinctes (entre elles et de la lettre
choisie initialement) avec ordre, puis les
chiffres : on trouve donc

26×
(

4

2

)
×25×24×103

immatriculations possibles.

6.11. ; �

a. On choisit 4 coureurs parmi 10 avec ordre : il
s’agit d’une 4-liste d’éléments distincts ; on
trouve 10×9×8×7 = 5040.

b. On choisit sans ordre les trois autres cou-
reurs de l’équipe parmi les 9 restants puis
on ordonne les quatre coureurs, on trouve(9

3

)×4! = 2016.

c. Considérons le complémentaire, l’en-
semble des équipes ne comportant ni A, ni
B. Il y a 8× 7× 6× 5 = 1680 choix ordonnés
de 4 coureurs parmi 8 ; on en déduit que le
cardinal recherché est 5040−1680 = 3360.

6.12. ; �

La réponse est

Γ2
6 =

(
7

2

)
= 7×6

2
= 21

car l’ensemble de ces dominos est en bijection
avec celui des deux-combinaisons de �1,6�.

6.13. ; �

La réponse estΓm
p . En effet, une telle application

est modélisable par la donnée de la liste avec ré-
pétition des valeurs qu’elle prend. Par exemple,
la fonction f : �1,4�→ �1,3� définie par

f (1) = 1, f (2) = 2, f (3) = 2, f (4) = 3

est modélisée par [1,2,2,3].
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