Fonctions numériques

Apres les suites numériques, nous poursuivons le cours d’Analyse par I'étude des
fonctions a variable et valeurs réelles.
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de mentionner les nombreuses méthodes d’approximation mises au point des I'antiquité,
en particulier celles d’Archimede pour le calcul approché d’aires ou encore des premiéres
décimales de m.

D ANS l'introduction historique du cours sur les suites numériques, nous avons eu I'occasion

Cependant, un gouffre sépare ces idées d’approximation et la notion de limite, le pas a franchir consis-
tant a concevoir une infinité d’approximations.

Linvention du calcul différentiel au XVII¢ siecle par Newton et
Leibniz fut le premier moment de I'histoire des Mathématiques
ou l'idée de limite apparut.

Newton utilisa la notion de fluxion d'une quantité fluente : on
dirait de nos jours vitesse d'une quantité variable, ou encore dé-
rivée d'une fonction.

Cependant, il ne fonda pas rigoureusement ce calcul des
fluxions en se contentant d’évoquer « un quotient de quantités
infinitésimales (i.e. infiniment petites) », véritable ancétre de la
Newton limite du taux d’accroissement.

Ce manque de formalisme fut critiqué dans le pamphlet The Analyst,
a discourse adressed to an infidel mathematician que George Berkeley
publia en 1734 contre l'usage de ces quantités infimitésimales fait par
Edmond Halley, qui fut le premier a diffuser les idées de Newton.

Ala fin du XVIII¢ si¢cle, D’Alembert tenta de préciser I'usage de ces infi-
nitésimaux, avant que Cauchy et Weierstrass n’en donne des définitions
plus précises au XIX¢ siecle.

Afin de généraliser la notion de limite a d’autres cadres que celui des

nombres réels, il fallut s’affranchir de la relation d’ordre.
D’Alembert

Une voie fructueuse consista a généraliser les notions de distance et de norme (Fréchet). Ce fut le
point de départ de la topologie qui culmina en s’affranchissant de I'idée méme de distance grace aux
définitions de Hausdorff.

Weierstrass Hausdorff
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1. Vocabulaire et notations usuelles sur les fonctions numériques

Dans tout ce chapitre, K désigne I'ensemble R ou C. On rappelle que les notions de fonctions et

d’applications sont synonymes '.

1.1. Courbe représentative d’'une fonction
La courbe représentative d’'une fonction est un objet essentiel pour I’appréhender intuitivement.

Définition 4.0. Courbe représentative d’'une fonction numérique

Soit f:A— Bavec AcRetBcR, et (O,u,v) un repére du plan. On appelle courbe représentative
de f dans ce repére 'ensemble des points de coordonnées (x, f(x)) pour x € A.

------ 7 g

1.2. Opérations sur les fonctions
Le lecteur est renvoyé au cours de théorie de ensembles (ALG 2) pour la définition et les propriétés de
la composition des fonctions.
Nous rappelons simplement que, pour des fonctions a valeurs dans KK définies sur un ensemble quel-
conque 7, on peut construire les deux opérations usuelles.
Définition 4.1. Combinaisons linéaires et produit

Soit Z un ensemble quelconque, f: 7 — K, g: Z — K deux applications et A € IK. On définit f + g,
fgetAfpar:

f+g: 9 —K , f8: 92 —K et A\f:72—K
x — f(x)+Ag(x) x — f(x)gx) x — Af(x)
On étend ces définitions par récurrence a n fonctions fi, ..., f,; définies sur & avec les notations

ifk et ﬁfk
k=1 k=1

Toute fonction de la forme ;

Aefr avec (Aq,...,Ap) e K"
k=1

est appelée une combinaison linéaire des fonctions fi, ..., f,-1 et f,.

1. Conformément aux programmes de CPGE.
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1.3. Fonctions majorées, minorées, bornées et monotonie

Le vocabulaire des suites lié a la relation d’ordre < s’étend aux fonctions numériques avec a la clé des
théoremes analogues (limite monotone, encadrement etc.).

Définition 4.2. Ordre

Une fonction f: A — R estdite :

= majoréesidM e R, Vxe A, f(x) <M.
= minoréesidme R, Vxe A, m< f(x).
= bornée si | f| est majorée sur A.

On étend naturellement ces définitions a
une partie A de A. Par exemple, f est dite
bornée sur A si f|p est bornée.

Une fonction est : majorée (resp. minorée) si et seule-
ment si son graphe est contenu dans un demi-plan
horizontal inférieur (reps. supérieur), bornée si et
seulement si son graphe est contenu dans une bande
horizontale, si et seulement si elle est majorée et mi-
norée.

Il est clair qu'une fonction f : A — R est majorée si et
seulement si f(A) est une partie majorée de R.

N

Si A # o et f majorée sur A, on note

sup f(x) := sup f(A) (lorsque A estl’ensemble de départ de f, on notera plus simplement sup f)

XEA

On emploie une notation analogue pour la borne inférieure en cas d’existence.

Définition 4.3. Extremum local, extremum global

Soit f: A — R définie sur une partie A de R et c € A. On dit que f admeten c:

= un maximum (resp. minimum) global si Vx € A, f(x) < f(c) (resp. =>).

= un extremum global si elle admet en ce point un maximum ou un minimum global.

= un maximum (resp. minimum) local s’il existe V € 7 tel que Vx € AnV, f(x) < f(c) (resp. >),

ce qui équivaut a

Ja>0,VxeAn[c—a,c+al, f(x) < f(c) (resp.>)

= un extremum local si elle admet en ce point un maximum ou un minimum local.

Pour A c A, on dit que f admet un maximum sur A si f|p admet un maximum. On adapte ce
vocabulaire aux autres situations (minimum, maximum local, etc.). Sous réserve d’existence, on

emploiera les notations
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Sous réserve d’existence, on emploiera les notations suivantes et leurs variantes :

max f(x) := max f(A) (lorsque A est’ensemble de départ de f, on notera plus simplement max f)
Xe

, Maximum global \ T

!

!
’ ! Maximum local
’/
1 _— —

/£,

- /

A

/

Minimum local

Minimum local

Minimum global Minimum global /

Définition 4.4. Fonctions monotones
Soit f: ¥ — R avec Z c R; f estdite:
= croissante sur & si, pour tout (4, v) € 22, u<v = f(u) < f(v);
=» strictement croissante sur & si, pour tout (u, v) € 2% u<v = fw<f);
= décroissante sur Z si, pour tout (u, v) € P2 u<v = fw > fw;
= strictement décroissante sur & si, pour tout (u,v) € 2%, u<v = f(u) > f(v);

= monotone (resp. strictement monotone) sur Z lorsque f est croissante sur ¢ ou décroissante
sur ¥ (resp. strictement croissante sur & ou strictement décroissante sur %);

= constante sur ¥ si, pour tout (i, v) € 22, f(u) = f(v);

Si f:1— R (avec I vrai intervalle) est monotone mais pas strictement, alors f admet au moins un
palier, ie. 3] c I vrai intervalle tel que f soit constante sur J.

On déduit de ces définitions quelques propriétés évidentes telles que la somme de deux fonctions
croissantes (resp. décroissantes) est croissante (resp. décroissante), et I’'on peut conclure a une stricte
croissance (resp. décroissance) dans le cas ou I'une des deux fonctions est strictement croissante
(resp. décroissante). Lorsqu'une composée f o g est bien définies, les deux fonctions étant définies
sur une partie de R et a valeurs réelles, on déduit directement des définitions que
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f et g sont monotones de méme monotonie =—> fo g est croissante
f et g sont monotones de monotonies contraires = f o g est décroissante
En effet, dans le cas ol f et g sont décroissantes et croissantes, on a pour tout u et v dans '’ensemble
de définition de g :
usv = gw <gv) = f(gw) = fgw)

Il faut faire attention au signe des fonctions dans le cas des produits : le produit de deux fonctions
positives monotones de méme monotonie a la méme monotonie que chacune des fonctions.

—— Transmutation des hypotheses par passage a 'opposé ou I'inverse

Pour une fonction f: A— B ou A et B sont des parties de R :
= f croissante équivaut a — f décroissante, f est majorée équivaut a — f minorée.
= Danslecasou f >0, f est croissante équivaut a % décroissante, f majorée équivaut a ]—10 minorée.

Ces propriétés élémentaires permettent d’ optimiser certaines démonstrations en ramenant I’étude
d’un cas a un autre déja étudié.

1.4. Parité, périodicité, translation et dilatation d'un graphe

Les notions de parité et de périodicité nécessitent quelques clarifications sur les propriétés géomé-
triques des ensembles de définition.

Définition 4.5. Partie symétrique par rapport a 0, partie stable par T-translation
Soit T € R. Une partie Z de R est dite :
= symétrique par rapporta0sivVxe &, —xe€ 9.

=»> stable par T-translationsiVxe ¥, x€e ¥ < x+Te %Y.

Les notions de parité et d'imparité permettent de simplifier I'étude d’'une fonction.

Définition 4.6. Parité d’une fonction

Soit f: Z — R une fonction définie sur Z c R symétrique par rapport a 0. La fonction f est dite :

a. pairesiVxe 7, f(-x) = f(x); b. impairesi Vxe€ Z, f(—x) = —-f(x).

La fonction f est paire (resp. impaire)
si et seulement si son graphe est symé-
trique par rapport a 'axe des ordon-
nées (resp. O).

Dans ce cas, il suffit de construire sur
2 n [0,+o0[ et de compléter la figure
par la bonne symétrie pour obtenir la
courbe sur Z.
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On déduit directement des définitions que, en supposant qu’elle soit définie, la composée de deux
fonctions paires ou impaires est : paire si les deux fonctions sont paires ou de parités contraires, im-
paire si les deux fonctions sont impaires. Supposons par exemple que f et g soient respectivement
paire et impaire. Pour tout x appartenant a 'ensemble de définition de g :

(fog)=x) = f(g(=x) = f(-gW) = f(gW) = (fog)(x)

On généralise facilement ces deux propriétés a une axe vertical et un centre de symétrie quelconque.
Pour A d’équation x = c:

le graphe de f est symétrique par rapport a A si et seulement siVx e R, f(x) = f(2c—x)
En effet, le symétrique de M(x, y) par rapporta A est M(2¢ — x, y). Pour un point Q(a, b) du plan :
le graphe de f est symétrique par rapport a Q si et seulement siVxe R, 2b— f(x) = f(2a— x)

car le symétrique de M(x, y) par rapport a Q est M(2a— x,2b — y). Ces deux calculs reposent sur le fait

que le milieu de [MM'] ou M(x, y) et M'(x/, y') est le point de coordonnées (%x/, ”Ty)

Le point M’ est le symétrique de M par rapport a A si et seulement
si y' = y et le milieu de [MM’] appartient a A, ce qui équivaut a

P y’:yet%xl:c,i.e.y':yetx’ZZC—x.

PUEEEY EEEE )

T Q Le point M’ est le symétrique de M par rapport a Q si et seulement
!

si Q est le milieu de [MM'], ce qui équivaut 2 25X = g et Y32 = b,

ie.y=2b—yetx'=2a-x.

Définition 4.7. Fonctions périodiques

Une fonction f: Z — R est dite périodique si 3T > 0 tq. & soit stable par T-translation et Vx € &,
f(x+T) = f(x). On dit que f est T-périodique et que T est unepériode de f.

Si une fonction f est T-périodique,
alors son graphe s’obtient en tracant
le graphe sur n'importe quel inter-
valle de longueur T (que I'on appelle
aussi une « période ») puis en effec-
tuant des translations de vecteurs
Ti, 2Ti, 3T -i, etc., —Ti, —2Ti, etc.

Plus généralement, il est intéressant d’étudier les modifications qu'une composition par une fonction
affine apporte au graphe d'une fonction f. Comme x — Ax + T est la composée (dans cet ordre) de la
translation x — x+T1 et dela dilatation x — Ax, il suffit d’étudier les modifications du graphe de f aprés
composition a gauche (i.e. al’arrivée) ou a droite (i.e. au départ) par chacune de ces transformations.

Une dilatation d’'un facteur A au départ a pour effet géométrique une dilatation du graphe selon (Ox).

2. Une fonction T-périodique admet une infinité d’autres périodes, les nombres nT pour n € Z*.
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A A A A
\ y=rf y=f
A<0 y=fAx) y=fx)
0<A<l1
y=f® | y=fx y=fx) | y=fx A>1

Dans le cas d'une fonction périodique, la nouvelle fonction est toujours périodique mais de fréquence

différente.

y=fx 4 y=fx/3)

Une dilatation d’un facteur A a l'arrivée a pour effet géométrique une dilatation du graphe dans la

seule direction (Oy).

A A A A
y=r
y=-fx) y=rf y=fx
y=Af(x)
y=Af y=Af0
0<A<l1 A>1
y=r A<0
A A
y=f
Une translation de Tt au départ a pour effet y=fw
géométrique une translation de vecteur —Ti <— l
du graphe de la fonction. - A +7j
La méme translation effectuée a l'arrivée 1
a cette fois-ci pour effet géométrique une
transl.atlon de vecteur +71j du graphe de la y= Fx+T) V=Wt
fonction.

2. Limite en un point de R

Nous avons introduit au chapitre AN 1 (plus particulierement dans le paragraphe dédié a la topolo-
gie) les notions de voisinages et de point adhérent qui sont essentielles pour la généralisation de la

définition de limite aux fonctions.

Pour y € R, on notera 7y 'ensemble des voisinages de y.

LLG ¥ HX6
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Définition 4.8. Propriété vraie au voisinage d’un point ou au voisinage de I'infini

SoitAc R, f:A— R et a € R adhérent a A. Une propriété vérifiée par f est dite vraie au voisinage
de a s'il existe V € 7, tel qu’elle soit vérifiée sur ANV.

2.1. Définition de la limite
La notion de voisinage permet d’unifier les neufs cas de figure.

Définition 4.9. Limites

Soit Ac R, f:A— RetacR adhérent 2 A.
= On dit que f admet une limite en a si il existe £ € R tel que YV € %, U € ¥, f(UNA)CV.
= En cas d’existence, £ est unique. On note f(x) — ¢ ouencore )lclrrcll fx)=¢.

On déduit de la définition que, si f est définie en a et admet une limite ¢ en a, alors £ = f(a).

Lhypothese d’adhérence de a a A est raisonnable (il serait absurde de chercher a définir la limite en
—1 d’une fonction uniquement définie sur R ).

Comme dans le cas des suites numériques, cette définition admet une forme completement quan-
tifiée sans voisinages. Pour expliciter celle-ci, il faut cependant se placer dans I'un des neufs cas de
figure (a fini ou co, idem pour ¢). Par exemple, dans le cas ot a et £ sont réels :

Ve>0,3a>0, VxeAn[a—a,a+al, |f(x)-€ <e

Onremarquequef(x)ﬁe — f(x)—EWOetquef(x)ﬁo = |f(x)|ﬁ0_

Limite +oo en +oo :

VMeR,IM eR, Vx> M, f(x) > M
Limite +ocoenace R :

VMeR, Ja>0,
VxeAnla—-a,a+a], f(x) > M

Dans les fonctions ci-dessous, seules f; et f; admettent une limite en 0.

4

h f2 f3 fa
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Proposition 4.10. Existence d’'une limite finie et caractere localement borné

Soit a € R. Si f(x) — ¢ e R, alors f est bornée au voisinage de a.

2.2. Opérations sur les limites

Comme dans le cas des suites, les opérations sur les limites permettent d’éviter le recours a la défini-
tion dans de nombreux cas.

Proposition 4.11. Opérations sur les limites

Soit (¢1,¢5) € R?, f et g des fonctions définies sur une partie Ade Retac R adhérent a A.
On suppose que f(x) — 0 et g(x) — 0s.

a. Ona f(x)+g(x) — b1+ 0 et f(x)g(x) — 0105;

1 1 [
b. Si ¢, #0, alors —— est définie au voisinage de a et —— —— — et @ =,
fx f(x) x=a £y  f(x) x—=a £

Comme dans le cas des suites, des formes indéterminées apparaissent parfois en cas de limites infi-
nies.

Proposition 4.12. Opérations sur les limites

On reprend les notations du 3.11.:

a. le comportement de f(x) + g(x) au voisi- c. le comportement asymptotique de
nage de a est décrit par le tableau suivant f(x)g(x) est décrit par le tableau suivant
0 /0 0 eR + —
2 ! ! > *° 0y /0 >0 <0 0 +oco —o©
6LeR 0 +¢ + —
2 L 2 ° ° >0 0,4, 016, 0 400 —o0
e +* 4 FI
©0 o0 o0 <0 6162 21122 0 —oco +oo
— FI —
> > e 0 0 0 0 FI FI
b. Si ¢; = 0 et f positive (resp. négative) 400 400 —oo FI 400 —o0o
au voisinage de a, alors 1/ f(x) — to
(resp. —o0). -00  —00 +oo FI —oo +oo

Le théoreme de composition des limites, dispensable dans le cas des suites numériques, est essentiel
dans le cadre des fonctions. Il permet de justifier le calcul suivant :

X
Comme ¢* ——0et —e* —— —oc0,0onae ¢ ——0
X——00 X—+00 X—+00

LLG € HX6 10



2025-2026 Laurent Kaczmarek

Proposition 4.13. Théoréme de composition des limites (7 4.1)

Soit A et B deux parties de R, (a,b,?) € Es ou a est adhérent a A et des fonctions f: A — R et
g:B—Rtelles que f(A) =B, f(x) — b et’g(x) — 0. Alors (g0 f)(x) —— .
= — =

2.3. Limites latérales

On étend ici la notion de limite en filtrant I'ensemble de définition strictement a gauche ou a droite
du point.

Définition 4.14. Limites a gauche et a droite

Soit f:A—TR,acRetleR.

= Si a estadhérent a AnJa, +oo[, on dit que f admet ¢ pour limite a droite en a si f|Ama ool admet
¢ pour limite en a.

= Si a est adhérent 2 An] — oo, al, on dit que f admet £ pour limite a gauche en a si f]| An]—oo.dl
admet ¢ pour limite en a.

= En cas d’existence, la limite a gauche est unique et ’on note f(x) P fou lim f(x)=¢.
— X—a
x<a

De méme a droite : f(x)
xX—a
xX>a

En cas d’existence la limite a droite (resp. a gauche) est également notée f(x;) (resp. f(x,)).

fou lim f(x)=1¢
x—at

*~ Ilestclair que a est adhérent a An]a, +oo si et seulement si pour
touta>0,An]a,a+a[# .

——=° La fonction x — |x] admet une limite en tout point de R\ Z et
n'admet aucune limite en un point de Z.

[}

Pour n € Z, cette fonction admet cependant des limites latérales
en n valant respectivement 7 a droite et n — 1 a gauche.

9 On remarquera que, contrairement a la définition générale de la
limite en a, on « enleve » artificiellement le point a (on dit qu'on
R ° épointe) pour le calcul des limites latérales en ce point.

2.4. Le critere séquentiel

La connaissance du comportement asymptotique de ( f (up,)) nelN OU (Un) neN est une suite particuliére
de limite +oo ne suffit pas a déterminer celui de la fonction f en +oco : tout comme la suite extraite
(agp(m) new par rapport a (an) e, la donnée de (f(u”))nelN ne représente qu'un échantillon de f en
+00.

3. Ces hypotheses entrainent que b est adhérent a B.

LLG € HX6 11
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~ /N A SN AN A

Wuo\/ \/ul\/ \/uz\/ us\/ \/

En revanche, la connaissance du comportement asymptotique (f (un))ne]N pour toutes les suites
(Un) new de limite +oo permet de caractériser celui de f en +oo.

Proposition 4.15. Critere séquentiel pour les limites
Pour f:A—R,leRetacR adhérentaA:

f(x)—»f = VY(an)nen €AV yan ———a = f(an)—+oo>€

On adapte facilement ce résultat aux limites latérales. Ce critere permet de démontrer facilement
qu'une fonction n"admet pas de limite en un point de R donné.
Comment démontrer qu'une fonction n’admet pas de limite en un point de R ?

= Il suffit de construire des suites (u,),eN €t (Vn)new de limite a telles que (f(un))ndN et
(f(vn)),,cpy aient des limites différentes.

= On peut aussi construire (1) ,cv de limite a telle que ( f (un)) Ley Wadmette aucune limite.

En considérant la suite de terme général u,, := ——, qui est convergente de limite nulle, on démontre

I’lT[+
que la fonction

f:10,+00[ — R n'apasdelimite car (f(u,)), . 0'a pas de limite

1
X +—sin—
X

2.5. Limites et inégalités
Les théoremes sur les suites numériques se transposent sans peine au cas des fonctions.

Proposition 4.16. Passage a la limite dans une inégalité

Soit (¢1,0,) e R%etac R adhérent 2 A. Si f et g sont deux fonctions définies sur A a valeurs réelles
telles que f(x) < g(x) au voisinage de a et si f(x) — 0; et g(x) — 0y, alors €) < 0.

Comme dans le cas des suites, une inégalité stricte devient large a la limite : si f(x) < k au voisinage
de aet f(x) — ¢, alors £ < k.
X—a

Proposition 4.17. Inégalités asymptotiques connaissant la limite

Soit a € R adhérent a A, metM deux nombres réels et f: A — R. Si f(x) — lteRetm<fl<M,
alors m < f(x) <M au voisinage de a.

En particulier, si ¢ # 0, alors f est du signe de ¢ au voisinage a.
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3. Les grands théorémes d’existence d’'une limite

Les théoremes d’encadrement et des suites monotones se généralisent sans peine au cas des fonc-
tions.

3.1. Le théoréeme d’encadrement

Le théoreme d’encadrement est géométriquement évident : les courbes représentatives des fonctions
majorante et minorante forment « un entonnoir » dans lequel évolue la courbe de la fonction enca-
drée.

Proposition 4.18. Théoréme d’encadrement (7 4.2 )

Soit £ e Ret a € R adhérent 2 A. Si f, g et h sont trois fonctions définies sur A a valeurs réelles telles
que f(x) < g(x) < h(x) au voisinage de a et si f(x) — ¢ et h(x) — ¢, alors g(x) — 0.

Dans le cas ou £ = +oco (resp. —o0), la minoration (resp. majoration) de f suffit a conclure. Ainsi, les
inégalités
VteR, t—-1< t-sint < t+1

permet de conclure que ¢ —sin ¢ —oo (par la majoration) et ¢ —sin ¢ +00 (par la minora-

. t——00 t—+o00
tion).

3.2. Le théoréme de la limite monotone
L'énoncé de ce théoreme, dans le cadre fonctionnel, est plus délicat que son analogue séquentiel.

Théoreme 4.19. de la limite monotone

Soit I un vrai intervalle et f : 1 — R croissante. On note a = infI et b:= sup I dans R.
a. Si f est minorée (resp. majorée) sur I, alors f admet une limite réelle en a (resp. en b).
b. Si f est non minorée (resp. non minorée) sur I, alors f tend vers —oco en a (resp. vers +co en b).

c. La fonction f admet des limites réelles £, et ¢_ a droite et a gauche en tout xj intérieur al et

0- < flx) < s

[llustrons ce théoreme dans le cas ot I = [a, b[ avec b € R. La fonction admet une limite a gauche et a
droite en tout point xy €]a, bl.
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lim f(x)

x—b—

A

xl—i})}3+ f(x) - €+

44044443\41»
oy

J(x0)

/ lim f(0)

. f(a)

lim f(x)=¢0_

X—X0—

——--—-Q

a X0
L g
|

|

|

|

|

|

|

|

|

|
1

|

|

|

|

|

fla)

Cas ou f est majorée sur [a, b[ : la fonction admet (Cgas o1 f est n’est pas majorée sur [a, bl : la fonc-
une limite réelle ¢ quand x tend vers b. tion tend vers +oo quand x tend vers b.

4. Ftude d’une bijection et de sa réciproque

Dans ce paragraphe, nous allons donner quelques pistes pour étudier les propriétés de la réciproque
f~! d’'une bijection f: A — B (o1 A et B sont deux parties de R).
Représentations graphiques

On peut se faire une idée d’'une bijection réciproque au moyen d'une figure : les représentations gra-
phiques de f et f~! se déduisent 'une de I'autre par la réflexion d’axe A : y = x, droite appelée pre-
miere bissectrice du repére.

Pour tout u € A, notons v = f(u), de sorte que u = f‘l(v).

Les points M et M’, de coordonnées (u,v) et (v,u), appar-
tiennent aux courbes représentatives de f etde 1.

La symétrie d’axe A : y = x échangeant les points M et M/, les
graphes des fonctions f et f~! sont symétriques par rapporta A,
ce qui permet de construire le graphe de f~! connaissant celui
de f.

Imparités

Sila fonction f est impaire, alors f~! est impaire. Supposons f impaire. Soit y € B. Pour vérifier que
[FEn=-7w

il suffit, par injectivité de f, de démontrer que f(f~1(-y)) = f(—f'). Or f(f~'(-y) = -y et

F(= ') = ~f(f ') = -y par imparité de .

Monotonies

Sila fonction f est strictement monotone, alors sa bijection réciproque f~! est strictement monotone
de méme monotonie que f. Supposons par exemple f strictement croissante. Pour tout (b, by) dans
B2, I'implication
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bi<b, = f L)< f b

est vraie car sa contraposée f~1(b;) > f~l(b,) = by > b, est vraie par croissance de f puisque
b; = f(f~' (b)) pouri € {1,2}.

Tableaux de variation

Si A est un intervalle, f est continue et strictement monotone, alors on déduit le tableau de variation
de f~! en inversant celui de f. Considérons par exemple le cas ol1 f est strictement croissante et
A = [a,b[ avec (a, b) € R? tel que a < b. Par le théoréme de la limite monotone, f admet une limite
¢ € RU {+o0} en b. Par le théoreme de la bijection, f réalise une bijection de [a, b sur [f(a),£[. Sa
bijection réciproque étant strictement croissante, elle admet une limite L en £. On déduit du théoréme
de composition des limites que

) — L

Comme f~!(f(x)) = x pour tout x dans A, on déduit de 'unicité de la limite que b = L. Ceci justifie
que le tableau de variation de f~! s’obtient en «inversant» celui de f :

X a b X fla) )

b

fO | f@—F¢ 7w

a

On adapte facilement ce résultat aux autres situations (stricte décroissance, autre type d’intervalle
que [a, b]).

5. Les fonctions usuelles
On commence par quelques rappels sur ’exponentielle et le logarithme.
5.1. Exponentielle et logarithme
La proposition suivante est admise (et sera justifiée plus tard dans le cours d’Analyse).

Définition 4.20. Lexponentielle

Il existe une unique fonction f : R — R dérivable vérifiant f' = f et f(0) = 1. On la note exp.

On en déduit les propriétés suivantes.
Proposition 4.21. Propriétés de I'exponentielle
a. V(x,y) € R2, exp(x+ y) = exp(x) exp(y); c. VxelR, exp(x) > 1+x;

1
d. VxeR;, exp(—x) < ——;
1+x

1
b. Vy€R, exp(-y) = exp(y)’ e. V(x,y)€ R?, exp(x—y) = exp(x)/exp(y).
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On peut en déduire le tableau de variation de I'ex-
ponentielle puis tracer sa courbe représentative.

X —00 0 +00

+00
exp(x) 0o —— 1—

La droite d’équation y = 1 + x est tangente a la
courbe de I'’exponentielle au point de coordon-
nées (0,1).

Définition 4.22. Nombre d’Euler e

Le nombre e est défini par e = exp(1). On dit encore que e est la base des logarithmes néperiens. On
peut démontrer que 2,71 < e < 2,72.

La notation e* sera discutée un peu plus loin dans le paragraphe sur les fonctions puissances.
Nous introduisons a présent le logarithme népérien comme bijection réciproque de I’exponentielle.

Définition 4.23. Logarithme népérien

L'exponentielle réalise une bijection strictement croissante de R sur R?}. Sa bijection réciproque
est appelée logarithme népérien et notée In.

Nous avons déja évoqué dans le chapitre ALG 0 la création des logarithmes par Neper comme moyen
de transformer des produits en sommes.

Proposition 4.24. Propriétés du logarithme neperien (/4.3 )

Pour tous (x,y) € (R*)* et n€ Z, ona

a. In(xy) =lnx+Iny c. Inx'=-Inx e. In> =Inx-Iny
Inx
b. IH\/_=T d. Inx" =nlnx

Le logarithme neperien est I'unique primitive de la fonction x — — sur R} s’annulanten 1.
X

Proposition 4.25. Dérivée du logarithme neperien

1
La fonction In est dérivable sur R* et Vx>0, In'x = —-

X
La courbe représentative du logarithme peut s’ob-
X 0 1 € +too tenir en tracant la symétrique de celle de 'expo-
In' x + nentielle par rapport a la droite d’équation y = x.
Comme In'l = 1, la tangente au point (1,0) est
Inx oo —0— 177 +oo d’équation y = x — 1. Le tableau de variation de In

s’obtient « en inversant » celui de I'’exponentielle.
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Proposition 4.26. Comparaison

Inx
a. Vx>0, Inx<x-1; b. — ——0; c. xInx——0.
X Xx—+oo x—0+

Linégalité du a. nous apprend que le graphe du logarithme néperien est situé en-dessous de sa tan-
gente au point de coordonnées (1,0). C’est une inégalité classique de concavité sur laquelle nous re-
viendrons dans un chapitre ultérieur.

Le b. nous dit que lorsqu’un point se déplace sur cette
courbe dans le sens des abscisses croissantes, son abs-
cisse croit plus vite vers +oo que son ordonnée.

On en déduit I'allure de ce graphe a I'infini*.

Il faut connaitre I’approximation

0,69<In2<0,70

5.2. Racines et puissances

Le lecteur connait bien ces définitions : x’:= 1 pour xe R et :

—-n
x":=xx---xxpour (x,n) e RxIN* |, x":= (—) pour (x,n) e R* x Z tel que n < 0
\qf—-d X
n fois
Lexistence et I'unicité de la racine n-éme a été démontré dans le chapitre AN 1 et on en déduit le
théoreme suivant :
Définition 4.27. Racine n-éme

Pour tout n € IN*, la fonction p,, : x — x" réalise une bijection de R ; surlui-méme. Pour tout x € R,
on note {/x:= p,'(x); ce réel est appelé racine n-eme de x.

Autrement dit, {/x est'unique solution dans R, de I'’équation y" = x. Lorsque n est impair, p, réalise
une bijection de R sur R, on peut donc aussi noter {/x pour x < 0 dans ce cas.

Pour tout n € Z et tout réel x strictement positif, on a vu que In (x”*) = nlnx d’ot1 x" = exp (nln x). C’est
a partir de cette relation que I’on généralise la notion de puissance a des exposants quelconques.

Définition 4.28. Puissances

Pour (x,a) € R} xR, on pose x* := exp (aln x).

Pour a >0, on a x* o 0, on prolonge naturellement’la fonction en 0 en posant 0% := 0.
X—

4. On dit que le graphe présente une branche parabolique d’axe (Ox).
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En se souvenant que e := exp 1, on déduit de cette relation que e* = exp(xIne) = exp(x). Nous retrou-
vons ainsi la notation usuelle de I'exponentielle comme puissance du nombre e.

Proposition 4.29.

Pour x e R} etae R, Inx* = alnx.

Cette définition permet de prolonger la notation x* a des exposants a quelconque. En particulier, la
racine n-éme d’'un réel positif n’est autre que ce réel a la puissance %
Proposition 4.30. Propriétés des fonctions puissances

Pour tous a, f dans R, tous x, y dans R} et tout n € IN* :

a. Vx= P b. x%xP = xo+P c. xy%=(xy* d. (x)Pf = xoB

Pour a € R, on a x* = exp(aInx). On en déduit que, si a > 0, alors x — x* est strictement croissante
en tant que composée de deux fonctions strictement croissantes, et si a > 0, alors x — x“ est stric-
tement décroissante en tant que composée d'une fonction strictement croissante et d'une fonction
strictement décroissante. De plus, on a

+oo sia<0 x*=-0" .
et ——=x""=exp((@-Dlnx) —— <1 sia=1

0 sia>0 x—0 x—0+

x* = exp(alnx)

+o0o si0<a<l1
x—0+ {

0 sia>1

On en déduit que la fonction x — x® est dérivable en 0 si « > 1 et non dérivable si 0 < a < 1 mais
présentant une tangente verticale a I'origine dans ce cas.

A A y y

O<ax<l a=1

a<0 a>1

5.3. Cosinus, sinus et tangente circulaires

On commence par quelques rappels sur les congruences angulaires. Dans ce paragraphe, le plan est
supposé muni d'un repere orthonormé direct Z.

Définition 4.31. La notation de congruence modulo ¢

Soit (a, b, ) € R3. On dit que a est congru a b modulo ¢ s'il existe k € Z tel que a = b + k¢. On écrit
alors a = b[d].

5. On parle de prolongement par continuité.
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Proposition 4.32. Regles de calcul sur les congruences

Pour tous nombres réels a,a’, b, b’ et ¢ et tout A #0:
a. a=b[¢p] < a-b=0[d]; b. a=b[p] < Aa=Ab[A}];

c.a=bldpleta =b'[¢] = a+d =b+b'[d].

Soit ¢ le cercle d’équation x? + y2 =1, Me % et t = (OA,OM).
On rappelle que la mesure d’angle ¢ est égale a la longueur algé-
brique de I'arc orienté OM. Par définition du cosinus et du sinus,
(cost,sint) sont les coordonnées du point M dans le repere Z.
On en déduit les relations trigonométriques dans les triangles rec-

M (cost,sin t)

4‘
tangles. @) A
C Considérons un triangle ABC rectangle en C. En choisis-
sant des axes orientés, on déduit du théoreme de Thales :

AH AB , AK BC

cosx=—=— et sinx=— = —

M AM AC AC AC

¥
Kt - BC
5 doutanx = —-
AT H "B AB
Formules de symétrie

Pour tout réel x,

= cos?x+sin’x=1; = sin(;m+ x) = —sinx et cos(7T + X) = — COS X;

= sin(m— x) =sinx et cos(m— x) = —cos x;
( ) ( ) ’ = pour tout k € Z, cos(x + kn) = (-D¥cosx;

= sin(m/2 — x) = cos(x) et cos(m/2— x) =sinx; .

. = pour tout ke Z, sin(x + kmn) = (-1)*sin x;

= sin(m/2 + x) = cos x; b ( )=(1

= cos(m/2+ x) = —sinx; = COS—X=cosxetsin—x =—sinx.

Ces différentes formules ont ’avantage de « se lire »
directement sur le cercle trigonométrique. Il est donc
improductif de les apprendre par cceur, mieux vaut
savoir les retrouver rapidement au moyen d’'une pe-
tite figure : voir le schéma ci-contre permettant de
retrouver les formules :

|
T ) ) 7T |
cos(x+§) = —sinx et sm(x+§) = cosX o

Il faut savoir retrouver rapidement les valeurs remarques des fonctions trigonométriques en s’aidant
du cercle trigonométrique.
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T WO W
x 0 6 1 3 2 Définition 4.33. La fonction tangente
i
. 0 1 V2 V3 ) La fonction tangente est définie sur 7 := R\ { 5t km; ke Z} par
sinx - — —
! 2 2 2 .
sinx
V3 V2 1 tanx :=
cosx 1 —— = 0 COS X
2 2 2
1 Cosx
tanx 0 — 1 3 X On peut aussi définir cotan x := —— pour tout x # 0[n].
V3 sinx

La tangente et la cotangente se lisent sur le cercle trigonométrique.

Soit M le point de coordonnées (cos x,sin x), N et P les intersections —
supposées définies — de (OM) avec les droites paralleles a (Ox) et (Oy)
passant par les points B(0,1) et A(1,0) (et de méme orientation).

Par les relations trigonométriques dans les triangles rectangles OAP et
OBN, on a

PN — BO 1
tanx = — = AP et tanx = — = —
OA NB BN
d’ot1 cotan x = BN.
Formules d’addition
cos(a+p) = cosacosP —sinasin tano + tan
V((X,[?))E]RZ, . (o+P) . b ) b ettan(o&+ﬁ):—[3
sin(a+p) = sinacosf + cosasinf 1-tanatanf

lorsque chacune des trois tangentes est définie.

On déduit de la parité (resp. imparité) de cos (resp. sin) des formules analogues pour a — .

——— Formules de duplication

cos2x=2cos?x—1=1-2sinx 2tan x
VxeR, < . ) et Vxe 7, tan2x = ————
sin2x =2cosxsinx 1 —-tan<x

ouZ:={xeR;x#3[nl et x# 13|}

Le résultat suivant est fondamental en Physique.

Transformation de acost+bsinten Acos(t— ¢)

2 2
Soit (a, b) # (0,0). Comme (\/af+b2) + (\/a2b+b2) =1,3¢ € R tel que \/ﬁ = cos¢ et \/# =sino.

Ainsi, par les formules d’addition V¢ € R, acost+ bsint = vV a? + b?cos(t — ¢).

Sur le cercle trigonométrique, « on voit» facilement les résultats suivants (qui peuvent étre justifiées
au moyen des variations des fonctions trigonométriques) :
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——— Equations trigonométriques (#4.4)

B
cosx=0 < x:E[n]

sinx=0 < x=0([mn]
tanx=0 < x=0(n]

Laurent Kaczmarek

COSX =COSXy <= A

sinx =sinxy < A«

tanx =tanxy, < x = Xxg[m]

X = Xxg [27]
ou

X =—Xxp[2m]

h
—

quation sin x = sin xg

~o_ | 7

X = X [27]

ou

X ="m— Xy [27]

y=sinx Cosinus et sinus sont suppo-

|
A
.:
=

sés connus : ils sont définis sur

N3 e

R, 2mn-périodiques, respecti-
vement pair et impair, déri-
vables sur R avec

sin’ = cos, cos’ = —sin

EtVx >0, sinx<x (£4.5).

Proposition 4.34. Propriétés de la fonction tangente

La tangente est -périodique, impaire, dérivable sur Z et, Vx€ 2, tan'x =1+ tan? x =

Comme sin x 1 et cosx 0,
x—Z x—X_
2 2
sinx
tanx = +00
COSX x—I-

2

On en déduit le tableau de variation de la tangente
sur [0,7/2[:

X 0

[STE

+ | ==

tan’ x

+00

tanx 0 _—1~

La fonction tangente admet une infinité d’asymp-
totes, les droites Z; d’équations cartésiennes

T .
x=—+kmn, oukeZ

Pour tout x € [0, /2], tanx > x.
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5.4. Cosinus, sinus et tangente hyperboliques

Considérons I'ensemble d’équation cartésienne 7 : x> — y* = 1
dans un repere orthonormé direct Z.

Il s’agit d'une hyperbole et on prouve facilement que, dans le

repere %' obtenu par rotation de % d’un angle —n/4 autour du — A A
1
point O, 7 est le graphe de la fonction X — e
On en déduit la construction ci-contre.
Définition 4.35. (cosh etsinh). Cette terminologie est justifiée par l'analogie

cercle-hyperbole. Ces deux fonctions permettent
de paramétrer '’hyperbole 7. Lorsque t varie
dans R, le point de coordonnées (cosh ¢, sinh ¢) dé-
crit la branche d’hyperbole 77, (intersection de

On appelle cosinus et sinus hyperboliques
les fonctions, respectivement notées cosh et
sinh, définies par

cosh: R— R ,sinh: R — R I'hyperbole avec le demi-plan d’inéquation x > 0)
eX+e % e — e~ etle point de coordonnées (—cosh ¢,sinh t) décrit
X Y X 2 I'autre branche d’hyperbole .77~.

Proposition 4.36. (7 4.6)

Les fonctions cosh et sinh sont resp. paire et impaire, dérivables sur R, cosh’ = sinh et sinh’ = cosh.

Comme sinh 0 = 0, on a le tableau suivant :

/f X —0o0 0 +00

/) sinh’ x +

+00

7 sinhx |—po ——0

y=e/2 b Puis, grace au signe donné ci-dessus du sinus hyperbolique,
femm T on en déduit le tableau de variations de cosh :

coshx | —o0 0 +00

y =sinhx cosh’ x - 0 +

coshx

Deplus,onaVxelR, sinhx< > < coshx.

La relation fondamentale circulaire cos? +sin? = 1 a pour analogue® hyperbolique :

2

6. Cf.I'analogie des parametrages du cercle d’équation x% + y2 = 1 et de I'hyperbole d’équation x% — y2 = 1.

LLG € HX6 22



2025-2026 Laurent Kaczmarek

Proposition 4.37. Relation fondamentale hyperbolique

Vx € R, cosh? x —sinh®x = 1.

Comme dans le cas circulaire, on peut développer une trigonométrie hyperbolique’ comportant des
formules d’addition, de duplication, de factorisation, etc. Par exemple, pour tous réels x et y :

etV eV eV 47y

coshxcoshy =
cosh(x + y) = coshxcosh y +sinhxsinhy car oTHY | g XY f oY _ g X+Y
sinhxsinhy = 1
On pourra s’entrainer avec le test (£ 4.7 ).
Définition 4.38. Tangente hyperbolique (7 4.8 )
. , . sinh
On appelle tangente hyperbolique et 'on note tanh, la fonction —osh
cos
Proposition 4.39. Propriétés de la tangente hyperbolique (74.9)
La tangente hyperbolique est impaire et dérivable sur R avec tanh’ = 1 —tanh? = o
cos
On a, pour tout réel x, X —00 0 +00
/
tanh sinhx e*—e™* 1-e%* tanh’ x *
ann x = = =
coshx e*+e* 1+e 2% tanhx | -] ——0—— 1
Ainsi tanh(x) 1. Comme tanh’ > 0, la tan-
xX—+00 .
gente hyperbolique est strictement croissante | _—
sur R. On a tanh0 = 0 et 'équation de la tan-
gente a |’origine au graphe de tanh est y = x.
On complete I'étude précédente en utilisant y = tanh(x)
limparit¢ detanh. T

5.5. Polynomes et fractions rationnelles

Définition 4.40. Polyndmes et fractions rationnelles

Une fonction P: R — R est dite polynomiale s’il existe n € IN et (ay, ..., a,) € R tel que

7. La trigonométrie hyperbolique n’est pas au programme.
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n
VxeR, P(x) = Y apxf
k=0

Dans le cas ou P est non nulle, la liste (ay, ..., a,) est unique sous I'’hypothese a;, # 0 : 'entier n est
appellé le degré de P et les a;, les coefficients de P.

On appelle fraction rationnelle tout fonction s’exprimant comme quotient de fonctions polyno-
miales.

On sait qu'une fonction polynomiale de degré n € IN admet au plus 7 racines. Il faut connaitre le
résultat suivant que nous démontrerons plus loin dans le cours d’algebre linéaire.

Proposition 4.40. Décomposition en éléments simples

Soit n € IN* et 7y, ..., z, des nombres complexes distincts et P une fonction polynomiale de degré
strictement inférieur a n. Il existe des nombres complexes Ay, ..., A, tels que
P(2)

n )\k
V EC\ yeoeoy ) -
z {z1 Zn} (z—2z1) x---x(2—2zy) lgiz_zk

Par exemple, il existe (a, b, c) € C3 tels que

1 1 a b c
VXER\{_]-)Orl}y = = —+ +
x(x2-1) zlz-D(z+1) 2z z-1 z+1

En multipliant par x puis en faisant tendre I'’expression vers 0, on obtient :

1 bx cXx
—— —1leta+ +
(x2+1) x—0 x—1 x+1 z—0

d’out @ = 1. En multipliant par x — 1 puis en cherchant la limite en 1, on trouve b = %
de facon analogue on aboutita ¢ = %

et en procédant

6. Relations de comparaison des fonctions

Dans ce paragraphe, nous allons transposer les trois relations de comparaisons sur les suites dans le
cadre fonctionnel.

6.1. La négligeabilité

Les définitions et notations sont identiques au cas séquentiel en remplacant « a partir d'un certain
rang» par « au voisinage de x ».

Définition 4.41. La négligeabilité, notations o (Landau) et <« (Hardy)

Soit u et v des fonctions définies sur un méme voisinage de x, € R. On dit que u(x) est négligeable
devant v(x) au voisinage de xy si

= Je définie au voisinage de x, telle que &(x) 0 et u(x) = e(x)v(x) au voisinage de x.

X— X0
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= On note alors u(x) = o(v(x)) ou u(x) <« v(x). On peut omettre x — xp s'il n'y a pas ambi-
X— X0 X—X
guité.

Si v(x) # 0 au voisinage épointé de xy, alors u(x) o o(v(x)) équivaut a % - 0
—AX0

Il faut bien comprendre que cette relation de comparaison ne concerne que I'ordre de grandeur en
valeur absolue : un fonction positive peut étre négligeable par rapport a une fonction positive. On a
x <« —x* en +oo. La notation usuelle f(x) = o(f(x)) est abusive. On a 1 = o(x) et y/x = o(x) mais cet
deux « o(x) » ne sont pas égaux.

Dangers de la notation o(g(x))

En résumé, I'égalité f(x) = o(g(x)) en xo n’en est pas une, il faut la comprendre comme une relation
binaire. En particulier, on explicitera tout « o(g(x)) » avant de I'utiliser dans un calcul. On reviendra
ala définition en I’écrivant sous la forme g(x)e(x) au voisinage de xy avec € qui tend vers 0 en x.

Voici par exemple I'échelle de comparaison des puissances de x en +oo :

1 1 1 2 3
<< -y << — << — << 1 << X << X << X <<
x—+o0 x3 x—+oco x2 x—+oco x X—+o0 X—+00 X—+00 X—+00 X—+00

L'échelle de comparaison des puissances de x en 0 est inversée par rapport a la précédente :

. ) 1 1 1
< MK K KKl x-cxk=sx—=ox

x—0 x—0 x—0 x—0 x—0 Xx x—0 )(j2 x—0 x3 x—0

Comme dans le cas des suites, il faut connaitre la comparaison des fonctions usuelles en +oo.

Proposition 4.42. Croissances comparées

b

Poura>0,b>0etc>0,0ona(Inx)? <« x! <« e « x*ete ™ « x P « (Inx)"%en +oo.

Le cas ab > 0 est le seul ou la comparaison de (Inx)“ et xb n'est pas directe car les deux fonctions
tendent alors vers +oo (sia>0eth> 0) ou0 (sia<0etb<0).Par exemple, si a >0 et b <0, alors

(Inx)® - +ooetx —+>0d’oux <« (Inx)% en +oo0.
— —+00

On pourra s’entrainer au moyen du test (£ 4.10).

Les regles de calcul, rassemblées ci-dessous, sont faciles a retenir tant leurs démonstrations sont
courtes et naturelles.

Proposition 4.43. Regles de calcul sur les petits 6

Soit u, v, w, f et g des fonctions a valeurs réelles définies au voisinage de xj € R.

a. Ype R, o(u(x)) x—:»xo [0) [pu(x)) (absorption des constantes multiplicatives);

fo) = o)

= f(x)+g(x) = o(u(x)) (lasomme de deux petits 0 est un petit 0);
gx) = ou(x) X3
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c. f(x) = ' o(1) si et seulement si f(x) xTx()» 0;

— X

e = u(x) = o(w(x)) (transitivité de larelation 6);
X—Xo

— X

{ ux) = o)

v(x) oo o(w(x))

— X

e = f(x)g(x) = o(u(x)v(x)) (comptabilité de o avec x);
X—Xp

—X

fx) o o (u(x))
") g =, 0w

— X

f. f(x)x: o(ulx) = f(x)g(x)x: o(u(x)g(x)) (comptabilité de p avec x);

— X — X

g. VYa>0, u(x) =0 (v(x)) = ux)® =0 (v(x)*) (pour des fonctions a valeurs dans R.).
0 —X0

— X

Proposition 4.44. Composition a droite

Soit xo € R, u et v définies sur un voisinage V de xo, ¢ 2 valeurs dans V telle que ¢(y) T Xo.
—JYo

y
Stux) = o), alors u(dy)) 50O (v(d())-

Par exemple, si u(x) <« v(x), alors u (x?) < v (x?). C’est bien un résultat sur la composition a
X—+00 X—+00
droite : pour tout ¢ a valeur dans V de limite x, en yy,

u=o() enxy = uod =o(rvod) eny, (onacomposé adroite u et v)

On prendra garde a la composition a gauche. Méme sous des conditions simples portant sur la fonc-
tion f: 2 — R, larelation u = o(v) nentraine pas en général que fou = o(fov). Par exemple en +oo,
x= o(xz) mais In x n’est pas un petit 6 de In x* car In x> = 2In x pour x > 0.

Comme dans le cas séquentiel, il faut étre prudent avec la composition a gauche et I'addition :

fx) < ulx
X fx)+gx) < ulx)+v(x)
glx) <« v X Xo
X— X0

Par exemple 1 = o(x) et 1 = o(1 — x) mais 2 # o(1) en +oo.

6.2. Léquivalence

Définition 4.45. L'équivalence, notation ~

Soit u et v des fonctions définies au voisinage de xg € R. On dit que u(x) est équivalente a v(x) au
voisinage de x si

= 30 définie au voisinage de x telle que 6(x) — 1 et u(x) = 8(x) v(x) au voisinage de x.
—X0

= Onnote alors u(x) ~ v(x).
X 0

— X

. s S I . u(x)
Si v(x) # 0 au voisinage épointé de xy, alors u(x) ~ wv(x)équivauta — —— 1.
X—Xo v(x) x—xo
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Léquivalence est une relation d’équivalence sur ’ensemble des suites de nombres réels R (les pro-
priétés de réflexivité et de symétrie sont évidentes).

Proposition 4.45. Regles de calcul sur les équivalents

Soit u, v, w, f et g des fonctions a valeurs réelles définies au voisinage de xj € R.

a. u(x) ~ vx) = oux)=o0(vx);
X—Xp

— X

b. u(x) ~ vix)etv(x) ~ wkx) = ulx) ~ w(x) (transitivité de la relation ~);
X—Xq X— X0 X— X0

c. f(x) ~ uxetgx) ~ vix) = f(x)gx) ~ ux)v(x) (comptabilité de ~ avec x).
X— X0 X—Xp X—Xo

d. f(x)x~ glx) = f(x)u(x)x~ g(x)u(x) (comptabilité de ~ avec x).

— X0 — X0
(x) x) = —— L
e. f(x quOg X P g(x)’

Les propriétés d. et g. peuvent se résumer ainsi : pour calculer un équivalent d'un produit (resp. d'un
quotient), il suffit de former le produit (resp. le quotient) des équivalents. Comme pour la négligea-
bilité, il n’existe pas de résultat de ce type pour les sommes. La relation ~ n’est pas compatible avec
I’addition :

X

fx) ~ gk
X Xo 2 f)+ulx) ~ g)+v
X— X0

u(x) My v(x)

Par exemple en 0, x ~ x + x> et —x + x> ~ —x mais x? # x>. En particulier, on ne peut ajouter membre
a membre des équivalences ni faire passer un terme de gauche a droite en le transformant en son
opposé(mais c’est possible pour le produit) :

FO) ~ 800 f0)+ulx) ~ glx) + ulx)
)+ u(x) ~ gx) 2 f(x) ~ gx) — u(x)

Proposition 4.46. Composition a droite dans des équivalents

Soit xo € R, u et v définies sur un voisinage V de xo, ¢ 2 valeurs dans V telle que ¢(y) g Xo.
—JYo

Si u(x) T v(x), alors u(d(y)) o v(b().

—Jo

Ainsi en +oo, u(x) ~ v(x) = u(2x) ~ v(2x). Comme pour la négligeabilité, il n’ y a pas de résultat
général sur la composition a gauche dans des équivalents, i.e. pour une fonction f: ¥ — R

u(x) e v(x) 2 f(ux) i f(v(x)

ex+1

en toute généralité. Par exemple, x + 1 ~ x mais el £ e* car T =e. Il existe cependant des cas ou
I'on peut composer a gauche, comme celui des puissances et du logarithme.
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Proposition 4.47. Regles de composition a gauche dans des équivalents

Pour des fonctions u et v définies et positives au voisinage de xp € R :

a. YaeR, ux) ~ vix) = ux)* ~ vx)%;
X— X X—Xo

b. Si u(x)

¢ €E+ \ {1} et u(x) ot v(x), alors In u(x) oy Inv(x).
—X0

X— X — X0

Le signe au voisinage d'un point est conservé par équivalence mais pas le sens de variation. En effet,

1
4= ~ 1--—
xx—>+oo X

les expressions de gauche et droite étant respectivement décroissante et croissante par rapport a x.

Proposition 4.48.

Deux fonctions équivalentes en xy sont du méme signe au voisinage de xjp.

6.3. La domination

Comme nous I'avions mentionné dans le chapitre dédié aux suites, cette relation sera moins utilisée
que les deux précédentes et vérifie des propriétés analogues.

Définition 4.49. La domination, notation O (Landau)

Soit u, v définies au voisinage de xj € TR. On dit que u(x) est dominée par v(x) au voisinage de x si
=> b définie et bornée au voisinage de xj telle que u(x) = b(x)v(x) au voisinage de xp.

= On note alors u(x) x—:>x0 O(v(x)).

— X

Si v(x) # 0 au voisinage épointé de xy, alors u(x) = O(v(x)) équivaut a — est bornée au voisinage
X v

épointé de xp.

Comme dans le cas des « petits 6 », il s’agit d'un abus de notation. Il ne s’agit pas d'une égalité mais
d’une relation. 11 est clair que u(x) = o(v(x)) implique que u(x) = O(v(x)) car une fonction qui tend
vers 0 quand x tend vers xj est bornée au voisinage de xy. La réciproque est fausse, on a par exemple
en +oo, 2024x? + 1 = O (x?) mais 2024x* # o (x?) car 'expression 202‘;# ne tend pas vers 0 quand x
tend vers +oo.

Proposition 4.50. Regles de calcul

Soit u, v, w, t définies au voisinage de x, € R.Onaen Xp -
u(x) = O(v(x))
v(x) = O(w(x))

b. u(x) et O(1) si et seulement si u est bornée au voisinage de 0;
—X0

= u(x) = O(w(x)) (transitivité de O);
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O(v(x)

u(x)
C.
{ w(x) = O(t(x)

d. u(x) =0(v(») = ux)w(x) = O(v(x)w(x)) (compatibilité de O avec x).

= u(x)w(x) = O(v(x)t(x)) (compatibilité de O avec x);

6.4. Levée d’'une forme indéterminée par calcul asymptotique

Au dela du signe, une autre propriété est conservée par équivalence : |'existence et la valeur d'une
limite.

Proposition 4.51.

Si f(x) ~ 8x)etg(x) ——LER, alors flx) ——¢.

x2024 2024

Par exemple en +oo, x* —Inx ~ x* et e — ~ e* car Inx = o(x?) et x*9%* = o(e¥). Ainsi

x%-Inx x2

eX — x2024 x— 400 X

x2-Inx
o% — 12023 x— 100

Comme x* = 0(e*) en +oo, on en déduit que

Ce type de calcul, qualifié d’asymptotique, est bien plus efficace que les méthodes standards.

Levée d’une FI par calcul asymptotique

On trouve une chaine d’équivalents en xj
)~ gi(x) ~ - ~ gp(x)

0.

ol g,(x) a un comportement connu en Xg. Si g, (x) ¢, alors on en conclut que f(x)

X— X0 X— X0

Dans les calculs, on aura intérét a chercher les équivalents les plus simples possibles. Il est clair que
I’équivalent le plus simple d'une fonctions de limite réelle non nulle est sa limite.

Proposition 4.52.

0.

Pour xj € R, une fonction u définie au voisinage de xp et £ € R*, u(x) ~ ¢ < u(x)
X— X X— X

Equivalents usuels (74.11)

Pour f dérivable en 0 avec f'(0) #0, on a f(u) — f(0) ~ f'(0)u au voisinage de 0.
On en déduit les cas usuels suivants :
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a. e'-1 ~ u; c. sinu ~ u; e. tanu ~ u;
u— u—0 u—0
i f. 1+w)%-1 ~00(u
u—>
b. In(1+ w) o u; d. cosu-1 o 5 (pour tout a € R).

Commencons par un quotient d’expressions de limites nulles. En 0, on a

) Vitu-1 % 1
u) = ~ ==
cosu—1 _u?z u

Ainsi f n’a pas de limite en 0 mais admet des limites latérales en 0 valant respectivement +oo et —co
a gauche et a droite. Poursuivons par une expression tend vers 1 a une puissance tendant vers l'infini
en valeur absolue. En 0, on a
In(1+In(1+ u))

sinu

g(w) := (1+In(1 + w)7 = exp

La stratégie est ici d’étudier la limite de 1'expression dans I'exponentielle pour conclure par com-
position des limites (car nous ne pouvons a priori composer par I’exponentielle a gauche dans des

équivalents). Onaen0:

In(l+In(1+uw) In(Q+u) u ]
sinu u u

In(1+In(1+ w)
sinu u—

car In(1 + u) tend vers 0 avec u. On en déduit que 5 1 puis g(u) — € par compo-
u—

sition des limites.

Comme les principaux équivalents et croissances comparées sont formulées en 0, il est préférable de
se ramener a ce cas par changement de variable.

Equivalent en un point # 0

Pour rechercher un équivalent de f(x) en un point xy # 0, on peut effectuer le changement de
variable x = xp + u. On est ramené a rechercher unéquivalent de f(xo + ©) quand u tend vers 0.

Déterminons un équivalent de tan x en 5- On écrit x = u + 5 et on étudie 'expression quand u tend
vers 0 :

: IS
my  sin(u+%)  cosu 1
tan(u+ —) = — = - ~ —_—
cos(u+%3) —sinu -u
. . . 1
Comme x— 5 —— 0, on en déduit par composition a droite que tanx ~ &
)C—'z x—»E E —X

X

Etudions a présent le comportement de quand x tend vers 2. On écrit x = 2 + u et on étudie

3*-9
'expression quand u tend vers 0 :

2¥_4  22tu_g 4 241 4 e“Mm2_71 4yln2 4In2
= = — X = — X ~ =

3¥x—9 32*tu_9 9 3u_1 9 euln3_7 9yln3 9In3
2% _4 4ln2

3¥_9 x—2 9In3

Ainsi
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7. Fonctions a variable ou valeurs complexes

Une fonction f de R dans C doit étre comprise comme une courbe : f(#) estI'affixe a I'instant £ d’'un
point du plan supposé muni d'un repeére.

Etudions par exemple le roulement sans glissement d’'un « petit »
cercle de rayon i sur un « grand » cercle de rayon 1.

/ \ Considérons le repere orthonormé direct d’origine le centre du
grand cercle tel que le point de contact entre les deux cercles soit

celui de coordonnées (1,0).

On s’intéresse a la trajectoire de ce point initial de contact (en
bleu sur la figure ci-contre).

Lorsque le point de contact entre les deux cercles a tourné de ¢
radians, le point M a tourné de 4¢ radian sur le petit cercle.

On en déduit I'affixe du point M :

1\ . 1 ; 5 . 1 -
f(r) = (1 + Z) el + Ze’w”“) = Ze” - ZeS” (trajectoire de la famille des épicycloides)

On peut représenter en dimension trois le graphe d'une
fonction f de C dans R en tracant les points de coordon-
nées (Re z,Imz, f (z)) quand z varie dans C, cf. ci-contre
le graphe de

zZ+— Ccos|z|

Pour une fonction de C dans C, il n’existe pas de repré-
sentation commode car le graphe d’'une telle application
est un objet mathématique de dimension quatre :

(Rez,Imz,Re f(z),Im f(2))

On peut cependant I'appréhender en représentant les graphes des deux applications Re f et Im f,
voire en représentant celui de | f|.
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Dans le chapitre AN 1, nous avons défini au sein du paragraphe dédié a la topologie les notions de
voisinage et de point adhérant, dans KK = R ou C. La définition de la limite au moyen des voisinages
donnée dans ce cours vaut pour des fonctions dont le domaine est une partie de C et a valeurs dans C
a partir du moment o1 les points et les limites considérées sont dans C. La définition de f(z) — ¢

ou w € C est adhérant au domaine ¥ de fetfe Cest:
Ye>0,da>0, Vze ZNB(w,a), f(2) e B(,¢)
c’'est-a-dire, en explicitant les définitions des boules ouvertes au moyen du module :
Ve>0,3a>0,Vze 7, lz—0|<a = |f(2)-£| <e

Dans le cas complexe, « faire tendre z vers I'infini » n’a aucun sens : on peut en effet tendre vers I'infini
dans une infinité de direction. On peut néanmoins s’affranchir de cette difficulté par la définition de

f(2) 0:

|z] =400

Ve>0,IMeR, Vze P, zI>M = |f(2)-{| <e

+00:

De méme pour |f(2)|
|z]—+00

YM'eR,IMeR, Vze 7, |z2I>M = |f(2)|>M

ou encore | f(z)| — +oo:
Z—W
YM>0,3a>0,Vze D, z-v|<a = |f(2)| >M
Par exemple, pour d € N*, ay,..., a; dans C avec a; #0, on a
d
Z akzk
k=0

et pour le justifier, il suffit d’appliquer I'inégalité triangulaire : pour tout nombre complexe z

d
Z dek
k=0

+00
|z]—+00

a-1

> lagllzl? = Y lagl1z1*
k=0

+00.

d-1
On conclut en remarquant que |ag| x4 — Z |agl x*
=0 X—+00

Les opérations sur les limites s’étendent naturellement a ce cadre, avec les précautions d’'usage pour
les formes indéterminées. Revenons par exemple au théoreme de décomposition en éléments simples
(cf. 5.5 ala page 24). Ill existe (a, b, ¢) € C3 tels que

1 a b c

1
VZEC\{_i)Ori}) = - ; :—+—_+—_
z2(z22+1)  zlz-iD)(z+0) z z—i z+i

En multipliant par z puis en faisant tendre I'expression vers 0, on obtient :

1 bz cz
—  ——>1leta+ -+ _
(z2+1) z—0 z—i z+1i z—0

d’ou1 a = 1. En multipliant par z — i puis en cherchant la limite en i, on trouve b = —% et en procédant

de facon analogue on aboutita ¢ = —%-

On peut se ramener a des limites réelles au moyen de I’équivalence suivante :

f(z)me = Ref(z)mReB et Imf(z)mlmé
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4.1.®9D
Calculer lorsqu’elles existent les limites suivantes :

X2 +2|x| X2 —4 L ox-1

a. lim ——— b. im——— - c. lim
x——c0  x x=2x2-3x+2’ x=1x"—1

4.2.®9D

. 1
Etudier le comportement en 0 de la fonction définie par f(x) = x? {—J .
X

43.®9D

Résoudre I'inéquation In|x+ 1| —In|2x + 1| > In2.

44.®9D

Résoudre dans R I'équation cos x + sin x = 0.

45.®9

Etudier et représenter la fonction f définie sur R par f(x) = (cos x) (1 + cos x).

4.6.®9D

Résoudre cosh x + 2sinh x = 2 dans R.

4.7.®9

a. Etablir que le sinus hyperbolique réalise une bijection de R sur R.

b. Exprimer sinh™! au moyen du logarithme néperien. Tracer le graphe de sinh™.

48.®9D

xcosh(x) —sinh(x) _
cosh(x)

Tableau de variation et courbe de la fonction définie par f: x —

49.®9
Etablir que Vx € R, arctan (e*) = arctan (tanh (g)) + g

4.10.®"D
Comparer au voisinage de 0 les fonctions f: x — xIn (1 + x?) et g: x — x.

4.11.®9D

Lever les formes indéterminées suivantes pour u — 0 :

1 L b 2" -1, 2" —1-sinu, d. (1+tanw)<@nx,

a. — —
u?  sin

)

. c.
Yu’ sinu In(1+ w)
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9. Solutions

4.1.e8 O
a. Comme
X% +2|x| .
Vx#0, ——— =x+2xsigne(x) <x+2
X

on trouve —oo.
b. Comme

x2—4 B X+2
x2-3x+2 x-1

Vx#2,

on trouve 4.

c. Lénoncé n'a de sens que pour n > 1. Pour
x#1,ona

Ainsi, on trouve —.
n

4.2.88 O
Pour tout x #0,0on a

1 1 1
——1< |- g_
X X X

d’oti, puisque x* > 0, x — x* < f(x) < x et donc,
d’apres le théoreme d’encadrement,

[0

43.88 O

Linéquation est définie sur R\ {—1,—-1/2} et est
équivalente a

(x+1)2
Cx+1)2 7

ie (x+1)2-222x+1)? > 0, soit encore

Xx+1-4x-2)(x+1+4x+2) >0
=-3x-1 =5x+3

3 1 1 1
On trouve |——,——| U [——,——].
23]
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44.88 D

Pour tout réel x, cosx = —sin x si et seulement
si cosx = cos(x + 1/2), ce qui équivaut a x =
—x—m/2[2n] ou x = x + /2 [27]. Cette derniéere
équation n’ayant pas de solution, cos x = —sinx
sietseulementsi2x = —m/2[2n],ie x = —1/4 [7].
L'ensemble des solutions est donc

{—g+kn;k€Z}

45.88 O
La fonction f est paire et 2m-périodique, on
I’étudie sur [0, 7t]. La fonction f est dérivable sur
R et, pour tout x € R,

f'(x) = —sin(x) — 2sin(x) cos(x)

= —-2sin(x) (% + cos(x))

On en déduit que le signe de f'(x) pour x € [0, 7]
est 'opposé de celui de 1/2 + cos(x), ainsi

f'(x) <0 pour x € [0,27/3]
f'(x) >0 pour x€ [2n/3,T7]

D’ou les variations puis le graphe de f :

x 0 & n
[ - +
2 0
f(x) \ _1 /
4
* 27
3
0l n
4.6.88 O
En posant ¢ = e*, 'équation est équivalente a
1
3t—--=4
t
2+ V7
c'est-a-dire 31> —4t-1 =0, donc ¢ = 3\/_-

Puisque t = e* > 0, on trouve 1'unique solution
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(2+\/7)
x=In
3

4.7.88 O

a. Cela découle des variations du sinus hyper-
bolique qui ont été étudiées dans le cours :
sinh réalise une bijection strictement crois-
sante de R sur sinh(R) = R.

b. Soit ye RetxeR,ona

x=sinh(y) < e -e™ =2x
—e'-1/e’=2x

—> (ey)2—2xey—1:0

Le discriminant du trinome u? —2xu + 1
étant 4x2 + 4, il admet pour solutions,

x+V1+x?

Puisque seule x + V1 + x2 est positive,
sinh ' (x) =In (x+ V1+ xz)

On trace le symétrique du graphe de sinh
par rapport a la premiere bissectrice du re-
pere:

y =sinh(x)

7 Y= sinh™!(x)

4.8.88 O

Onremarque que f estimpaire et qu’elle est dé-
finie et dérivable sur R puisque cosh ne s’an-
nule pas. De plus, Vx € R, f(x) = x —tanh(x),
ainsi f’ = tanh? > 0. La fonction f est donc
croissante sur R. On a

LLG ¥ HX6
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fx)

+00 et f(x) —— —o0
X—+00 x—+00

Comme

f(x) —x =—tanh(x) i F1

les droites d’équations y = x+1 et y = x—1 sont
asymptotes au graphe de f respectivement en
—oo et +oo.

4.9.88 O

Posons

f:R—R
x — arctan (e¥) — arctan (tanh(x/2))

Cette fonction est dérivable sur R en tant que
somme de fonctions dérivables sur R et Vx € R,

1 11— tanh?(x/2)
1+(e%)? 21+ tanh?(x/2)
¢ 11-tanh®(x/2)

T 1+e2* 21 +tanh?(x/2)
e 1 cosh?(x/2) — sinh?(x/2)
T 1+e2r 2 cosh?(x/2) + sinh?(x/2)

f/(x) — ex

B e* 1 1
T 1+4e2r 2(eX+eX)/2
e* e*

14 e2r 142X

La fonction f est donc constante sur R. Comme
f(0) =arctan(1) = /4, on a

VxeR, arctan(e*)=arctan(tanh(x/2))+ g
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4.10.88 O

On a pour tout réel x,
|f0| < IxP

donc f(x) < g(x).

4.11.88 O
a. Commesin%(u) ~ utetu™ <« u”
u—0 u—0
a
1 1 1
u?  sin*(u) u—0 u?
. 1
etainsi — - — —— +00.
u sin*(u) u—0
b. Ona
20-1 M@ _1  In@Q)u
sin(u) a sin(u) u—0 u
u_
ainsi — ——In(2).
sin(u) u—0
c. Ona

LLG ¥ HX6

2

, on

Laurent Kaczmarek

2U_1=!n@ _ = uln(2) + o(w)
u—)

et sin(#) = u + o(u) ainsi

24 — 1 —sin(w) = (In(2) - Du+ o(w)

et donc
2% —1 —sin(w) B In2)-Nu
sin(u) T u—0 u
28 -1 -sin(w)
Ainsi In(2) - 1.
In(1+ u) u—0

. Comme tan(u) —— 0,on a

u—0
cotans(u) In (1 + tan(w)) ~0 cotan® (u) tan(uw)
u—>

~ cotan? (u)
u—0

Comme cotan?(u) — +0o,0na
u—)

3
(1 + tan(z)) @™ @) — +00
u—»
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