
Ù AN 4 Fonctions numériques

Après les suites numériques, nous poursuivons le cours d’Analyse par l’étude des
fonctions à variable et valeurs réelles.

Brou de noix, Soulages

4 Fonctions numériques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1 Vocabulaire et notations usuelles sur les fonctions numériques . . . . . . . . . . . . . . . . . . . . . . . 3

1.1 Courbe représentative d’une fonction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Opérations sur les fonctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Fonctions majorées, minorées, bornées et monotonie . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Parité, périodicité, translation et dilatation d’un graphe . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Limite en un point deR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1 Définition de la limite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Opérations sur les limites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Limites latérales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Le critère séquentiel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5 Limites et inégalités . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Les grands théorèmes d’existence d’une limite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.1 Le théorème d’encadrement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Le théorème de la limite monotone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 Étude d’une bijection et de sa réciproque . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5 Les fonctions usuelles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5.1 Exponentielle et logarithme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.2 Racines et puissances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.3 Cosinus, sinus et tangente circulaires . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.4 Cosinus, sinus et tangente hyperboliques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.5 Polynômes et fractions rationnelles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6 Relations de comparaison des fonctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6.1 La négligeabilité . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6.2 L’équivalence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.3 La domination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.4 Levée d’une forme indéterminée par calcul asymptotique . . . . . . . . . . . . . . . . . . . . . . 29

7 Fonctions à variable ou valeurs complexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
8 Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
9 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34



2025-2026 Laurent Kaczmarek

D ANS l’introduction historique du cours sur les suites numériques, nous avons eu l’occasion
de mentionner les nombreuses méthodes d’approximation mises au point dès l’antiquité,
en particulier celles d’Archimède pour le calcul approché d’aires ou encore des premières

décimales de π.

Cependant, un gouffre sépare ces idées d’approximation et la notion de limite, le pas à franchir consis-
tant à concevoir une infinité d’approximations.

Newton

L’invention du calcul différentiel au XVIIe siècle par Newton et
Leibniz fut le premier moment de l’histoire des Mathématiques
où l’idée de limite apparut.

Newton utilisa la notion de fluxion d’une quantité fluente : on
dirait de nos jours vitesse d’une quantité variable, ou encore dé-
rivée d’une fonction.

Cependant, il ne fonda pas rigoureusement ce calcul des
fluxions en se contentant d’évoquer « un quotient de quantités
infinitésimales (i.e. infiniment petites) », véritable ancêtre de la
limite du taux d’accroissement.

Ce manque de formalisme fut critiqué dans le pamphlet The Analyst,
a discourse adressed to an infidel mathematician que George Berkeley
publia en 1734 contre l’usage de ces quantités infimitésimales fait par
Edmond Halley, qui fut le premier à diffuser les idées de Newton.

À la fin du XVIIIe siècle, D’Alembert tenta de préciser l’usage de ces infi-
nitésimaux, avant que Cauchy et Weierstrass n’en donne des définitions
plus précises au XIXe siècle.

Afin de généraliser la notion de limite à d’autres cadres que celui des
nombres réels, il fallut s’affranchir de la relation d’ordre.

D’Alembert

Une voie fructueuse consista à généraliser les notions de distance et de norme (Fréchet). Ce fut le
point de départ de la topologie qui culmina en s’affranchissant de l’idée même de distance grâce aux
définitions de Hausdorff.

Cauchy Weierstrass Fréchet Hausdorff
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1. Vocabulaire et notations usuelles sur les fonctions numériques

Dans tout ce chapitre, K désigne l’ensemble R ou C. On rappelle que les notions de fonctions et
d’applications sont synonymes 1.

1.1. Courbe représentative d’une fonction

La courbe représentative d’une fonction est un objet essentiel pour l’appréhender intuitivement.

Définition 4.0. Courbe représentative d’une fonction numérique

Soit f : A → B avec A ⊂R et B ⊂R, et (O,u,v) un repère du plan. On appelle courbe représentative
de f dans ce repère l’ensemble des points de coordonnées

(
x, f (x)

)
pour x ∈ A.

y = sin x

x

1.2. Opérations sur les fonctions

Le lecteur est renvoyé au cours de théorie de ensembles (ALG 2) pour la définition et les propriétés de
la composition des fonctions.

Nous rappelons simplement que, pour des fonctions à valeurs dansK définies sur un ensemble quel-
conque D , on peut construire les deux opérations usuelles.

Définition 4.1. Combinaisons linéaires et produit

Soit D un ensemble quelconque, f : D →K, g : D →K deux applications et λ ∈K. On définit f +g ,
f g et λ f par :

f + g : D −→K

x 7−→ f (x)+λg (x)

, f g : D −→K

x 7−→ f (x)g (x)

et λ f : D −→K

x 7−→ λ f (x)

On étend ces définitions par récurrence à n fonctions f1, . . ., fn définies sur D avec les notations

n∑
k=1

fk et
n∏

k=1
fk

Toute fonction de la forme
n∑

k=1
λk fk avec (λ1, . . . ,λn) ∈Kn

est appelée une combinaison linéaire des fonctions f1, . . ., fn−1 et fn .

1. Conformément aux programmes de CPGE.

LLG . HX 6 3
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1.3. Fonctions majorées, minorées, bornées et monotonie

Le vocabulaire des suites lié à la relation d’ordre ⩽ s’étend aux fonctions numériques avec à la clé des
théorèmes analogues (limite monotone, encadrement etc.).

Définition 4.2. Ordre

Une fonction f : A →R est dite :

majorée si ∃M ∈R, ∀x ∈ A, f (x)⩽M.

minorée si ∃m ∈R, ∀x ∈ A, m ⩽ f (x).

bornée si | f | est majorée sur A.

On étend naturellement ces définitions à
une partie ∆ de A. Par exemple, f est dite
bornée sur ∆ si f |∆ est bornée.

Une fonction est : majorée (resp. minorée) si et seule-
ment si son graphe est contenu dans un demi-plan
horizontal inférieur (reps. supérieur), bornée si et
seulement si son graphe est contenu dans une bande
horizontale, si et seulement si elle est majorée et mi-
norée.

Il est clair qu’une fonction f : A →R est majorée si et
seulement si f 〈A〉 est une partie majorée deR.

Si ∆ ̸=∅ et f majorée sur ∆, on note

sup
x∈∆

f (x) := sup f 〈∆〉 (lorsque ∆ est l’ensemble de départ de f , on notera plus simplement sup f )

On emploie une notation analogue pour la borne inférieure en cas d’existence.

Définition 4.3. Extremum local, extremum global

Soit f : A →R définie sur une partie A deR et c ∈ A. On dit que f admet en c :

un maximum (resp. minimum) global si ∀x ∈ A, f (x)⩽ f (c) (resp. ⩾).

un extremum global si elle admet en ce point un maximum ou un minimum global.

un maximum (resp. minimum) local s’il existe V ∈ Vc tel que ∀x ∈ A∩V, f (x) ⩽ f (c) (resp. ⩾),
ce qui équivaut à

∃α> 0, ∀x ∈ A∩ [c −α,c +α] , f (x)⩽ f (c) (resp. ⩾)

un extremum local si elle admet en ce point un maximum ou un minimum local.

Pour ∆ ⊂ A, on dit que f admet un maximum sur ∆ si f |∆ admet un maximum. On adapte ce
vocabulaire aux autres situations (minimum, maximum local, etc.). Sous réserve d’existence, on
emploiera les notations

LLG . HX 6 4
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Sous réserve d’existence, on emploiera les notations suivantes et leurs variantes :

max
x∈∆

f (x) := max f 〈∆〉 (lorsque ∆ est l’ensemble de départ de f , on notera plus simplement max f )

c1

c2

c3

c4

Maximum local

Minimum global

Minimum local

Maximum global

c1

c2 c4

Minimum global

Minimum local

c2 +αc2 −α

Définition 4.4. Fonctions monotones

Soit f : D →R avec D ⊂R ; f est dite :

croissante sur D si, pour tout (u, v) ∈D2, u < v =⇒ f (u)⩽ f (v) ;

strictement croissante sur D si, pour tout (u, v) ∈D2, u < v =⇒ f (u) < f (v) ;

décroissante sur D si, pour tout (u, v) ∈D2, u < v =⇒ f (u)⩾ f (v) ;

strictement décroissante sur D si, pour tout (u, v) ∈D2, u < v =⇒ f (u) > f (v) ;

monotone (resp. strictement monotone) sur D lorsque f est croissante sur D ou décroissante
sur D (resp. strictement croissante sur D ou strictement décroissante sur D) ;

constante sur D si, pour tout (u, v) ∈D2, f (u) = f (v) ;

Si f : I → R (avec I vrai intervalle) est monotone mais pas strictement, alors f admet au moins un
palier, ie. ∃J ⊂ I vrai intervalle tel que f soit constante sur J.

On déduit de ces définitions quelques propriétés évidentes telles que la somme de deux fonctions
croissantes (resp. décroissantes) est croissante (resp. décroissante), et l’on peut conclure à une stricte
croissance (resp. décroissance) dans le cas où l’une des deux fonctions est strictement croissante
(resp. décroissante). Lorsqu’une composée f ◦ g est bien définies, les deux fonctions étant définies
sur une partie deR et à valeurs réelles, on déduit directement des définitions que

LLG . HX 6 5
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f et g sont monotones de même monotonie =⇒ f ◦ g est croissante

f et g sont monotones de monotonies contraires =⇒ f ◦ g est décroissante

En effet, dans le cas où f et g sont décroissantes et croissantes, on a pour tout u et v dans l’ensemble
de définition de g :

u ⩽ v =⇒ g (u) ⩽ g (v) =⇒ f
(
g (u)

)
⩾ f

(
g (v)

)
Il faut faire attention au signe des fonctions dans le cas des produits : le produit de deux fonctions
positives monotones de même monotonie a la même monotonie que chacune des fonctions.

Transmutation des hypothèses par passage à l’opposé ou l’inverse

Pour une fonction f : A → B où A et B sont des parties deR :

f croissante équivaut à − f décroissante, f est majorée équivaut à − f minorée.

Dans le cas où f > 0, f est croissante équivaut à 1
f décroissante, f majorée équivaut à 1

f minorée.

Ces propriétés élémentaires permettent d’optimiser certaines démonstrations en ramenant l’étude
d’un cas à un autre déjà étudié.

1.4. Parité, périodicité, translation et dilatation d’un graphe

Les notions de parité et de périodicité nécessitent quelques clarifications sur les propriétés géomé-
triques des ensembles de définition.

Définition 4.5. Partie symétrique par rapport à 0, partie stable par T-translation

Soit T ∈R. Une partie D deR est dite :

symétrique par rapport à 0 si ∀x ∈D , −x ∈D .

stable par T-translation si ∀x ∈D , x ∈D ⇐⇒ x +T ∈D .

Les notions de parité et d’imparité permettent de simplifier l’étude d’une fonction.

Définition 4.6. Parité d’une fonction

Soit f : D →R une fonction définie sur D ⊂R symétrique par rapport à 0. La fonction f est dite :

a. paire si ∀x ∈D , f (−x) = f (x) ; b. impaire si ∀x ∈D , f (−x) =− f (x).

−x x −x

x

La fonction f est paire (resp. impaire)
si et seulement si son graphe est symé-
trique par rapport à l’axe des ordon-
nées (resp. O).

Dans ce cas, il suffit de construire sur
D ∩ [0,+∞[ et de compléter la figure
par la bonne symétrie pour obtenir la
courbe sur D .

LLG . HX 6 6
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On déduit directement des définitions que, en supposant qu’elle soit définie, la composée de deux
fonctions paires ou impaires est : paire si les deux fonctions sont paires ou de parités contraires, im-
paire si les deux fonctions sont impaires. Supposons par exemple que f et g soient respectivement
paire et impaire. Pour tout x appartenant à l’ensemble de définition de g :

( f ◦ g )(−x) = f
(
g (−x)

) = f
(−g (x)

) = f
(
g (x)

) = ( f ◦ g )(x)

On généralise facilement ces deux propriétés à une axe vertical et un centre de symétrie quelconque.
Pour ∆ d’équation x = c :

le graphe de f est symétrique par rapport à ∆ si et seulement si ∀x ∈R, f (x) = f (2c −x)

En effet, le symétrique de M(x, y) par rapport à ∆ est M(2c −x, y). Pour un point Ω(a,b) du plan :

le graphe de f est symétrique par rapport à Ω si et seulement si ∀x ∈R, 2b − f (x) = f (2a −x)

car le symétrique de M(x, y) par rapport à Ω est M(2a−x,2b− y). Ces deux calculs reposent sur le fait

que le milieu de [MM′] où M(x, y) et M′(x ′, y ′) est le point de coordonnées
( x+x ′

2 , y+y ′
2

)
.

Ω

M
Le point M′ est le symétrique de M par rapport à ∆ si et seulement
si y ′ = y et le milieu de [MM′] appartient à ∆, ce qui équivaut à
y ′ = y et x+x ′

2 = c, i.e. y ′ = y et x ′ = 2c −x.

Le point M′ est le symétrique de M par rapport à Ω si et seulement

si Ω est le milieu de [MM′], ce qui équivaut à x+x ′
2 = a et y+y ′

2 = b,
i.e. y ′ = 2b − y et x ′ = 2a −x.

Définition 4.7. Fonctions périodiques

Une fonction f : D →R est dite périodique si ∃T > 0 tq. D soit stable par T-translation et ∀x ∈ D ,
f (x +T) = f (x). On dit que f est T-périodique et que T est une 2période de f .

Si une fonction f est T-périodique,
alors son graphe s’obtient en traçant
le graphe sur n’importe quel inter-
valle de longueur T (que l’on appelle
aussi une « période ») puis en effec-
tuant des translations de vecteurs
Ti, 2Ti, 3T · i, etc., −Ti, −2Ti, etc.

TT TT

Plus généralement, il est intéressant d’étudier les modifications qu’une composition par une fonction
affine apporte au graphe d’une fonction f . Comme x 7→ λx +τ est la composée (dans cet ordre) de la
translation x 7→ x+τ et de la dilatation x 7→ λx, il suffit d’étudier les modifications du graphe de f après
composition à gauche (i.e. à l’arrivée) ou à droite (i.e. au départ) par chacune de ces transformations.

Une dilatation d’un facteur λ au départ a pour effet géométrique une dilatation du graphe selon (Ox).

2. Une fonction T-périodique admet une infinité d’autres périodes, les nombres nT pour n ∈Z∗.

LLG . HX 6 7
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y = f (x) y = f (−x) y = f (x) y = f (λx)

λ< 0

y = f (x)

y = f (λx)

λ> 1

y = f (x)

y = f (λx)

0 < λ< 1

Dans le cas d’une fonction périodique, la nouvelle fonction est toujours périodique mais de fréquence
différente.

y = f (x) y = f (x/3) y = f (x) y = f (3x)

Une dilatation d’un facteur λ à l’arrivée a pour effet géométrique une dilatation du graphe dans la
seule direction (Oy).

y = f (x)

y =− f (x)

y = f (x)

y = λ f (x)

λ< 0

y = f (x)

y = λ f (x)

0 < λ< 1

y = f (x)

y = λ f (x)

λ> 1

Une translation de τ au départ a pour effet
géométrique une translation de vecteur −τi
du graphe de la fonction.

La même translation effectuée à l’arrivée
a cette fois-ci pour effet géométrique une
translation de vecteur +τj du graphe de la
fonction.

y = f (x)

y = f (x +τ)

−τi

y = f (x)

y = f (x)+τ

+τj

2. Limite en un point deR

Nous avons introduit au chapitre AN 1 (plus particulièrement dans le paragraphe dédié à la topolo-
gie) les notions de voisinages et de point adhérent qui sont essentielles pour la généralisation de la
définition de limite aux fonctions.

Pour y ∈R, on notera Vy l’ensemble des voisinages de y .

LLG . HX 6 8
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Définition 4.8. Propriété vraie au voisinage d’un point ou au voisinage de l’infini

Soit A ⊂R, f : A →R et a ∈R adhérent à A. Une propriété vérifiée par f est dite vraie au voisinage
de a s’il existe V ∈Va tel qu’elle soit vérifiée sur A∩V.

2.1. Définition de la limite

La notion de voisinage permet d’unifier les neufs cas de figure.

Définition 4.9. Limites

Soit A ⊂R, f : A 7→R et a ∈R adhérent à A.

On dit que f admet une limite en a si il existe ℓ ∈R tel que ∀V ∈Vℓ, ∃U ∈Va , f (U∩A) ⊂ V.

En cas d’existence, ℓ est unique. On note f (x) −−−→
x→a

ℓ ou encore lim
x→a

f (x) = ℓ.

On déduit de la définition que, si f est définie en a et admet une limite ℓ en a, alors ℓ= f (a).

L’hypothèse d’adhérence de a à A est raisonnable (il serait absurde de chercher à définir la limite en
−1 d’une fonction uniquement définie surR+).

Comme dans le cas des suites numériques, cette définition admet une forme complètement quan-
tifiée sans voisinages. Pour expliciter celle-ci, il faut cependant se placer dans l’un des neufs cas de
figure (a fini ou ∞, idem pour ℓ). Par exemple, dans le cas où a et ℓ sont réels :

∀ε> 0, ∃α> 0, ∀x ∈ A∩ [a −α, a +α] ,
∣∣ f (x)−ℓ∣∣ ⩽ ε

On remarque que f (x) −−−→
x→a

ℓ ⇐⇒ f (x)−ℓ−−−→
x→a

0 et que f (x) −−−→
x→a

0 ⇐⇒ ∣∣ f (x)
∣∣−−−→

x→a
0.

M

M′

M

aa −α a +α

Limite +∞ en +∞ :

∀M ∈R , ∃M′ ∈R , ∀x ⩾ M′ , f (x) ⩾ M

Limite +∞ en a ∈R :

∀M ∈R , ∃α> 0,

∀x ∈ A∩ [a −α, a +α] , f (x) ⩾ M

ℓ+ε
ℓ

ℓ−ε
M

ℓ+ε
ℓ

ℓ−ε
a

a −α a +α

Dans les fonctions ci-dessous, seules f1 et f3 admettent une limite en 0.

f1 f2 f3 f4

LLG . HX 6 9
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Proposition 4.10. Existence d’une limite finie et caractère localement borné

Soit a ∈R. Si f (x) −−−→
x→a

ℓ ∈R, alors f est bornée au voisinage de a.

2.2. Opérations sur les limites

Comme dans le cas des suites, les opérations sur les limites permettent d’éviter le recours à la défini-
tion dans de nombreux cas.

Proposition 4.11. Opérations sur les limites

Soit (ℓ1,ℓ2) ∈R2, f et g des fonctions définies sur une partie A deR et a ∈R adhérent à A.
On suppose que f (x) −−−→

x→a
ℓ1 et g (x) −−−→

x→a
ℓ2.

a. On a f (x)+ g (x) −−−→
x→a

ℓ1 +ℓ2 et f (x)g (x) −−−→
x→a

ℓ1ℓ2 ;

b. Si ℓ1 ̸= 0, alors
1

f (x)
est définie au voisinage de a et

1

f (x)
−−−→
x→a

1

ℓ1
et

g (x)

f (x)
−−−→
x→a

ℓ2

ℓ1
·

Comme dans le cas des suites, des formes indéterminées apparaissent parfois en cas de limites infi-
nies.

Proposition 4.12. Opérations sur les limites

On reprend les notations du 3.11. :

a. le comportement de f (x) + g (x) au voisi-
nage de a est décrit par le tableau suivant

ℓ2 / ℓ1 ℓ1 ∈R +∞ −∞
ℓ2 ∈R ℓ1 +ℓ2 +∞ −∞
+∞ +∞ +∞ FI

∞ −∞ FI −∞

b. Si ℓ1 = 0 et f positive (resp. négative)
au voisinage de a, alors 1/ f (x) −−−→

x→a
+∞

(resp. −∞).

c. le comportement asymptotique de
f (x)g (x) est décrit par le tableau suivant

ℓ2 / ℓ1 > 0 < 0 0 +∞ −∞
> 0 ℓ1ℓ2 ℓ1ℓ2 0 +∞ −∞
< 0 ℓ1ℓ2 ℓ1ℓ2 0 −∞ +∞

0 0 0 0 FI FI

+∞ +∞ −∞ FI +∞ −∞
−∞ −∞ +∞ FI −∞ +∞

Le théorème de composition des limites, dispensable dans le cas des suites numériques, est essentiel
dans le cadre des fonctions. Il permet de justifier le calcul suivant :

Comme ex −−−−−→
x→−∞ 0 et −ex −−−−−→

x→+∞ −∞ , on a e−ex −−−−−→
x→+∞ 0
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Proposition 4.13. Théorème de composition des limites
(
E4.1

)
Soit A et B deux parties de R, (a,b,ℓ) ∈ R3

où a est adhérent à A et des fonctions f : A → R et
g : B →R telles que f (A) ⊂ B, f (x) −−−→

x→a
b et 3g (x) −−−→

x→b
ℓ. Alors (g ◦ f )(x) −−−→

x→a
ℓ.

2.3. Limites latérales

On étend ici la notion de limite en filtrant l’ensemble de définition strictement à gauche ou à droite
du point.

Définition 4.14. Limites à gauche et à droite

Soit f : A →R, a ∈R et ℓ ∈R.

Si a est adhérent à A∩ ]a,+∞[, on dit que f admet ℓ pour limite à droite en a si f
∣∣

A∩ ]a,+∞[ admet
ℓ pour limite en a.

Si a est adhérent à A∩ ]−∞, a[, on dit que f admet ℓ pour limite à gauche en a si f
∣∣

A∩ ]−∞,a[
admet ℓ pour limite en a.

En cas d’existence, la limite à gauche est unique et l’on note f (x) −−−−−→
x → a
x < a

ℓ ou lim
x→a− f (x) = ℓ.

De même à droite : f (x) −−−−−→
x → a
x > a

ℓ ou lim
x→a+ f (x) = ℓ

En cas d’existence la limite à droite (resp. à gauche) est également notée f (x+
0 ) (resp. f (x−

0 )).

Il est clair que a est adhérent à A∩ ]a,+∞[ si et seulement si pour
tout α> 0, A∩ ]a, a +α[ ̸=∅.

La fonction x 7→ ⌊x⌋ admet une limite en tout point de R \Z et
n’admet aucune limite en un point deZ.

Pour n ∈Z, cette fonction admet cependant des limites latérales
en n valant respectivement n à droite et n −1 à gauche.

On remarquera que, contrairement à la définition générale de la
limite en a, on « enlève » artificiellement le point a (on dit qu’on
épointe) pour le calcul des limites latérales en ce point.

2.4. Le critère séquentiel

La connaissance du comportement asymptotique de
(

f (un)
)

n∈N où (un)n∈N est une suite particulière
de limite +∞ ne suffit pas à déterminer celui de la fonction f en +∞ : tout comme la suite extraite
(aφ(n))n∈N par rapport à (an)n∈N, la donnée de

(
f (un)

)
n∈N ne représente qu’un échantillon de f en

+∞.

3. Ces hypothèses entraînent que b est adhérent à B.
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u0 u1 u2 u3 u4

En revanche, la connaissance du comportement asymptotique
(

f (un)
)

n∈N pour toutes les suites
(un)n∈N de limite +∞ permet de caractériser celui de f en +∞.

Proposition 4.15. Critère séquentiel pour les limites

Pour f : A 7→R, ℓ ∈R et a ∈R adhérent à A :

f (x) −−−→
x→a

ℓ ⇐⇒ ∀(an)n∈N ∈ AN, an −−−−−→
n→+∞ a =⇒ f (an) −−−−−→

n→+∞ ℓ

On adapte facilement ce résultat aux limites latérales. Ce critère permet de démontrer facilement
qu’une fonction n’admet pas de limite en un point deR donné.

Comment démontrer qu’une fonction n’admet pas de limite en un point deR ?

Il suffit de construire des suites (un)n∈N et (vn)n∈N de limite a telles que
(

f (un)
)

n∈N et(
f (vn)

)
n∈N aient des limites différentes.

On peut aussi construire (un)n∈N de limite a telle que
(

f (un)
)

n∈N n’admette aucune limite.

En considérant la suite de terme général un := 1
nπ+π

2
, qui est convergente de limite nulle, on démontre

que la fonction

f : ]0,+∞[ −→ R

x 7−→ sin
1

x

n’a pas de limite car
(

f (un)
)

n∈N n’a pas de limite

2.5. Limites et inégalités

Les théorèmes sur les suites numériques se transposent sans peine au cas des fonctions.

Proposition 4.16. Passage à la limite dans une inégalité

Soit (ℓ1,ℓ2) ∈R2 et a ∈R adhérent à A. Si f et g sont deux fonctions définies sur A à valeurs réelles
telles que f (x)⩽ g (x) au voisinage de a et si f (x) −−−→

x→a
ℓ1 et g (x) −−−→

x→a
ℓ2, alors ℓ1 ⩽ ℓ2.

Comme dans le cas des suites, une inégalité stricte devient large à la limite : si f (x) < k au voisinage
de a et f (x) −−−→

x→a
ℓ, alors ℓ⩽ k.

Proposition 4.17. Inégalités asymptotiques connaissant la limite

Soit a ∈R adhérent à A, m et M deux nombres réels et f : A →R. Si f (x) −−−→
x→a

ℓ ∈R et m < ℓ < M,

alors m < f (x) < M au voisinage de a.

En particulier, si ℓ ̸= 0, alors f est du signe de ℓ au voisinage a.
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3. Les grands théorèmes d’existence d’une limite

Les théorèmes d’encadrement et des suites monotones se généralisent sans peine au cas des fonc-
tions.

3.1. Le théorème d’encadrement

Le théorème d’encadrement est géométriquement évident : les courbes représentatives des fonctions
majorante et minorante forment « un entonnoir » dans lequel évolue la courbe de la fonction enca-
drée.

Proposition 4.18. Théorème d’encadrement
(
E4.2

)
Soit ℓ ∈ R et a ∈R adhérent à A. Si f , g et h sont trois fonctions définies sur A à valeurs réelles telles
que f (x)⩽ g (x)⩽ h(x) au voisinage de a et si f (x) −−−→

x→a
ℓ et h(x) −−−→

x→a
ℓ, alors g (x) −−−→

a→a
ℓ.

Dans le cas où ℓ = +∞ (resp. −∞), la minoration (resp. majoration) de f suffit à conclure. Ainsi, les
inégalités

∀t ∈R , t −1 ⩽ t − sin t ⩽ t +1

permet de conclure que t − sin t −−−−→
t→−∞ −∞ (par la majoration) et t − sin t −−−−→

t→+∞ +∞ (par la minora-

tion).

3.2. Le théorème de la limite monotone

L’énoncé de ce théorème, dans le cadre fonctionnel, est plus délicat que son analogue séquentiel.

Théorème 4.19. de la limite monotone

Soit I un vrai intervalle et f : I 7→R croissante. On note a = inf I et b := sup I dansR.

a. Si f est minorée (resp. majorée) sur I, alors f admet une limite réelle en a (resp. en b).

b. Si f est non minorée (resp. non minorée) sur I, alors f tend vers −∞ en a (resp. vers +∞ en b).

c. La fonction f admet des limites réelles ℓ+ et ℓ− à droite et à gauche en tout x0 intérieur à I et

ℓ− ⩽ f (x0) ⩽ ℓ+

Illustrons ce théorème dans le cas où I = [a,b[ avec b ∈R. La fonction admet une limite à gauche et à
droite en tout point x0 ∈ ]a,b[.
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a x0

b

f (x0)

f (a)

lim
x→x0+

f (x) = ℓ+

lim
x→x0−

f (x) = ℓ−

lim
x→b−

f (x)

Cas où f est majorée sur [a,b[ : la fonction admet
une limite réelle ℓ quand x tend vers b.

a

b

lim
x→a+ f (x)

f (a)

Cas où f est n’est pas majorée sur [a,b[ : la fonc-
tion tend vers +∞ quand x tend vers b.

4. Étude d’une bijection et de sa réciproque

Dans ce paragraphe, nous allons donner quelques pistes pour étudier les propriétés de la réciproque
f −1 d’une bijection f : A → B (où A et B sont deux parties deR).

Représentations graphiques

On peut se faire une idée d’une bijection réciproque au moyen d’une figure : les représentations gra-
phiques de f et f −1 se déduisent l’une de l’autre par la réflexion d’axe ∆ : y = x, droite appelée pre-
mière bissectrice du repère.

Pour tout u ∈ A, notons v = f (u), de sorte que u = f −1(v).

Les points M et M′, de coordonnées (u, v) et (v,u), appar-
tiennent aux courbes représentatives de f et de f −1.

La symétrie d’axe ∆ : y = x échangeant les points M et M′, les
graphes des fonctions f et f −1 sont symétriques par rapport à∆,
ce qui permet de construire le graphe de f −1 connaissant celui
de f .

u

v

u

v

f

f −1

Imparités

Si la fonction f est impaire, alors f −1 est impaire. Supposons f impaire. Soit y ∈ B. Pour vérifier que

f −1(−y) = − f −1(y)

il suffit, par injectivité de f , de démontrer que f
(

f −1(−y)
) = f

(− f −1(y)
)
. Or f

(
f −1(−y)

) = −y et
f
(− f −1(y)

)=− f
(

f −1(y)
)=−y par imparité de f .

Monotonies

Si la fonction f est strictement monotone, alors sa bijection réciproque f −1 est strictement monotone
de même monotonie que f . Supposons par exemple f strictement croissante. Pour tout (b1,b2) dans
B2, l’implication
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b1 < b2 =⇒ f −1(b1) < f −1(b2)

est vraie car sa contraposée f −1(b1) ⩾ f −1(b2) =⇒ b1 ⩾ b2 est vraie par croissance de f puisque
bi = f

(
f −1(bi )

)
pour i ∈ {1,2}.

Tableaux de variation

Si A est un intervalle, f est continue et strictement monotone, alors on déduit le tableau de variation
de f −1 en inversant celui de f . Considérons par exemple le cas où f est strictement croissante et
A = [a,b[ avec (a,b) ∈R2 tel que a < b. Par le théorème de la limite monotone, f admet une limite
ℓ ∈ R∪ {+∞} en b. Par le théorème de la bijection, f réalise une bijection de [a,b[ sur

[
f (a),ℓ

[
. Sa

bijection réciproque étant strictement croissante, elle admet une limite L en ℓ. On déduit du théorème
de composition des limites que

f −1( f (x)
) −−−→

x→b
L

Comme f −1
(

f (x)
) = x pour tout x dans A, on déduit de l’unicité de la limite que b = L. Ceci justifie

que le tableau de variation de f −1 s’obtient en « inversant » celui de f :

x

f (x)

a b

f (a)f (a) ℓ

x

f −1(x)

f (a) ℓ

aa
b

On adapte facilement ce résultat aux autres situations (stricte décroissance, autre type d’intervalle
que [a,b[).

5. Les fonctions usuelles

On commence par quelques rappels sur l’exponentielle et le logarithme.

5.1. Exponentielle et logarithme

La proposition suivante est admise (et sera justifiée plus tard dans le cours d’Analyse).

Définition 4.20. L’exponentielle

Il existe une unique fonction f :R→R dérivable vérifiant f ′ = f et f (0) = 1. On la note exp.

On en déduit les propriétés suivantes.

Proposition 4.21. Propriétés de l’exponentielle

a. ∀(x, y) ∈R2, exp(x + y) = exp(x)exp(y) ;

b. ∀y ∈R, exp(−y) = 1

exp(y)
;

c. ∀x ∈R, exp(x)⩾ 1+x ;

d. ∀x ∈R+, exp(−x)⩽
1

1+x
;

e. ∀(x, y) ∈R2, exp(x − y) = exp(x)/exp(y).
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On peut en déduire le tableau de variation de l’ex-
ponentielle puis tracer sa courbe représentative.

x

exp(x)

−∞ +∞

00

+∞+∞
0

1

La droite d’équation y = 1 + x est tangente à la
courbe de l’exponentielle au point de coordon-
nées (0,1).

1

y = exp(x)

Définition 4.22. Nombre d’Euler e

Le nombre e est défini par e = exp(1). On dit encore que e est la base des logarithmes néperiens. On
peut démontrer que 2,71 < e < 2,72.

La notation ex sera discutée un peu plus loin dans le paragraphe sur les fonctions puissances.

Nous introduisons à présent le logarithme népérien comme bijection réciproque de l’exponentielle.

Définition 4.23. Logarithme népérien

L’exponentielle réalise une bijection strictement croissante de R sur R∗+. Sa bijection réciproque
est appelée logarithme népérien et notée ln.

Nous avons déjà évoqué dans le chapitre ALG 0 la création des logarithmes par Neper comme moyen
de transformer des produits en sommes.

Proposition 4.24. Propriétés du logarithme neperien
(
E4.3

)
Pour tous (x, y) ∈ (

R∗+
)2 et n ∈Z, on a

a. ln(x y) = ln x + ln y

b. ln
p

x = ln x

2

c. ln x−1 =− ln x

d. ln xn = n ln x

e. ln
x

y
= ln x − ln y

Le logarithme neperien est l’unique primitive de la fonction x 7→ 1

x
surR∗+ s’annulant en 1.

Proposition 4.25. Dérivée du logarithme neperien

La fonction ln est dérivable surR∗+ et ∀x > 0, ln′ x = 1

x
·

x

ln′ x

ln x

0 +∞
+

−∞
+∞+∞

1

0

e

1

La courbe représentative du logarithme peut s’ob-
tenir en traçant la symétrique de celle de l’expo-
nentielle par rapport à la droite d’équation y = x.
Comme ln′ 1 = 1, la tangente au point (1,0) est
d’équation y = x − 1. Le tableau de variation de ln
s’obtient « en inversant » celui de l’exponentielle.
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Proposition 4.26. Comparaison

a. ∀x > 0, ln x ⩽ x −1 ; b.
ln x

x
−−−−−→
x→+∞ 0 ; c. x ln x −−−−→

x→0+ 0.

L’inégalité du a. nous apprend que le graphe du logarithme néperien est situé en-dessous de sa tan-
gente au point de coordonnées (1,0). C’est une inégalité classique de concavité sur laquelle nous re-
viendrons dans un chapitre ultérieur.

Le b. nous dit que lorsqu’un point se déplace sur cette
courbe dans le sens des abscisses croissantes, son abs-
cisse croît plus vite vers +∞ que son ordonnée.

On en déduit l’allure de ce graphe à l’infini 4.

Il faut connaître l’approximation

0,69 < ln2 < 0,70

y = x −1

y = ln x

1

5.2. Racines et puissances

Le lecteur connaît bien ces définitions : x0 := 1 pour x ∈R et :

xn := x ×·· ·×x︸ ︷︷ ︸
n fois

pour (x,n) ∈R×N∗ , xn :=
(

1

x

)−n

pour (x,n) ∈R∗×Z tel que n < 0

L’existence et l’unicité de la racine n-ème a été démontré dans le chapitre AN 1 et on en déduit le
théorème suivant :

Définition 4.27. Racine n-ème

Pour tout n ∈N∗, la fonction pn : x 7→ xn réalise une bijection deR+ sur lui-même. Pour tout x ∈R+,
on note n

p
x := p−1

n (x) ; ce réel est appelé racine n-ème de x.

Autrement dit, n
p

x est l’unique solution dansR+ de l’équation yn = x. Lorsque n est impair, pn réalise
une bijection deR surR, on peut donc aussi noter n

p
x pour x < 0 dans ce cas.

Pour tout n ∈Z et tout réel x strictement positif, on a vu que ln(xn) = n ln x d’où xn = exp(n ln x). C’est
à partir de cette relation que l’on généralise la notion de puissance à des exposants quelconques.

Définition 4.28. Puissances

Pour (x,α) ∈R∗+×R, on pose xα := exp(α ln x).

Pour α> 0, on a xα −−−−→
x→0+

0, on prolonge naturellement 5la fonction en 0 en posant 0α := 0.

4. On dit que le graphe présente une branche parabolique d’axe (Ox).
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En se souvenant que e := exp1, on déduit de cette relation que ex = exp(x lne) = exp(x). Nous retrou-
vons ainsi la notation usuelle de l’exponentielle comme puissance du nombre e.

Proposition 4.29.

Pour x ∈R∗+ et α ∈R, ln xα = α ln x.

Cette définition permet de prolonger la notation xα à des exposants α quelconque. En particulier, la
racine n-ème d’un réel positif n’est autre que ce réel à la puissance 1

n ·

Proposition 4.30. Propriétés des fonctions puissances

Pour tous α,β dansR, tous x, y dansR∗+ et tout n ∈N∗ :

a. n
p

x = x
1
n b. xαxβ = xα+β c. xαyα = (x y)α d. (xα)β = xαβ

Pour α ∈R, on a xα = exp(α ln x). On en déduit que, si α > 0, alors x 7→ xα est strictement croissante
en tant que composée de deux fonctions strictement croissantes, et si α > 0, alors x 7→ xα est stric-
tement décroissante en tant que composée d’une fonction strictement croissante et d’une fonction
strictement décroissante. De plus, on a

xα = exp(α ln x) −−−−→
x→0+

{
+∞ si α< 0

0 si α> 0
et

xα−0α

x −0
= xα−1 = exp

(
(α−1)ln x

) −−−−→
x→0+


+∞ si 0 < α< 1

1 si α= 1

0 si α> 1

On en déduit que la fonction x 7→ xα est dérivable en 0 si α ⩾ 1 et non dérivable si 0 < α < 1 mais
présentant une tangente verticale à l’origine dans ce cas.

α< 0

0 < α< 1 α= 1

α> 1

5.3. Cosinus, sinus et tangente circulaires

On commence par quelques rappels sur les congruences angulaires. Dans ce paragraphe, le plan est
supposé muni d’un repère orthonormé direct R.

Définition 4.31. La notation de congruence moduloφ

Soit (a,b,φ) ∈R3. On dit que a est congru à b modulo φ s’il existe k ∈Z tel que a = b +kφ. On écrit
alors a = b [φ].

5. On parle de prolongement par continuité.
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Proposition 4.32. Règles de calcul sur les congruences

Pour tous nombres réels a, a′,b,b′ et φ et tout λ ̸= 0 :

a. a = b [φ] ⇐⇒ a −b = 0[φ] ; b. a = b [φ] ⇐⇒ λa = λb [λφ] ;

c. a = b [φ] et a′ = b′ [φ] =⇒ a +a′ = b +b′ [φ].

Soit C le cercle d’équation x2 + y2 = 1, M ∈ C et t = (OA,OM).
On rappelle que la mesure d’angle t est égale à la longueur algé-
brique de l’arc orienté åOM. Par définition du cosinus et du sinus,
(cos t , sin t ) sont les coordonnées du point M dans le repère R.
On en déduit les relations trigonométriques dans les triangles rec-
tangles.

M(cos t , sin t )

t

AO

M

H

K
x

C

BA

Considérons un triangle ABC rectangle en C. En choisis-
sant des axes orientés, on déduit du théorème de Thalès :

cos x = AH

AM
= AB

AC
et sin x = AK

AC
= BC

AC

d’où tan x = BC

AB
·

Formules de symétrie

Pour tout réel x,

cos2 x + sin2 x = 1 ;

sin(π−x) = sin x et cos(π−x) =−cos x ;

sin(π/2−x) = cos(x) et cos(π/2−x) = sin x ;

sin(π/2+x) = cos x ;

cos(π/2+x) =−sin x ;

sin(π+x) =−sin x et cos(π+x) =−cos x ;

pour tout k ∈Z, cos(x +kπ) = (−1)k cos x ;

pour tout k ∈Z, sin(x +kπ) = (−1)k sin x ;

cos−x = cos x et sin−x =−sin x.

Ces différentes formules ont l’avantage de « se lire »
directement sur le cercle trigonométrique. Il est donc
improductif de les apprendre par cœur, mieux vaut
savoir les retrouver rapidement au moyen d’une pe-
tite figure : voir le schéma ci-contre permettant de
retrouver les formules :

cos
(
x + π

2

)
= −sin x et sin

(
x + π

2

)
= cos x

x

Il faut savoir retrouver rapidement les valeurs remarques des fonctions trigonométriques en s’aidant
du cercle trigonométrique.
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x 0
π

6

π

4

π

3

π

2

sin x 0
1

2

p
2

2

p
3

2
1

cos x 1

p
3

2

p
2

2

1

2
0

tan x 0
1p
3

1
p

3

Définition 4.33. La fonction tangente

La fonction tangente est définie sur D :=R\
{ π

2
+kπ ; k ∈Z

}
par

tan x := sin x

cos x

On peut aussi définir cotan x := cos x

sin x
pour tout x ̸= 0[π].

La tangente et la cotangente se lisent sur le cercle trigonométrique.

A

B

H

K M

O

PN

x

x

Soit M le point de coordonnées (cos x, sin x), N et P les intersections –
supposées définies – de (OM) avec les droites parallèles à (Ox) et (Oy)
passant par les points B(0,1) et A(1,0) (et de même orientation).

Par les relations trigonométriques dans les triangles rectangles OAP et
OBN, on a

tan x = AP

OA
= AP et tan x = BO

NB
= 1

BN

d’où cotan x = BN.

Formules d’addition

∀(α,β) ∈R2,

{
cos(α+β) = cosαcosβ− sinαsinβ

sin(α+β) = sinαcosβ+cosαsinβ
et tan(α+β) = tanα+ tanβ

1− tanα tanβ
lorsque chacune des trois tangentes est définie.

On déduit de la parité (resp. imparité) de cos (resp. sin) des formules analogues pour α−β.

Formules de duplication

∀x ∈R ,

{
cos2x = 2cos2 x −1 = 1−2sin2 x

sin2x = 2cos x sin x
et ∀x ∈D , tan2x = 2tan x

1− tan2 x

où D := {
x ∈R ; x ̸= π

2 [π] et x ̸= π
4

[
π
2

]}
.

Le résultat suivant est fondamental en Physique.

Transformation de acost+bsint en Acos(t−φ)

Soit (a,b) ̸= (0,0). Comme
(

ap
a2+b2

)2+
(

bp
a2+b2

)2 = 1, ∃φ ∈R tel que ap
a2+b2

= cosφ et bp
a2+b2

= sinφ.

Ainsi, par les formules d’addition ∀t ∈R , a cos t +b sin t =
√

a2 +b2 cos(t −φ).

Sur le cercle trigonométrique, « on voit » facilement les résultats suivants (qui peuvent être justifiées
au moyen des variations des fonctions trigonométriques) :
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Équations trigonométriques
(
E4.4

)

cos x = 0 ⇐⇒ x = π

2
[π]

sin x = 0 ⇐⇒ x = 0[π]

tan x = 0 ⇐⇒ x = 0[π]

cos x = cos x0 ⇐⇒


x = x0 [2π]

ou

x =−x0 [2π]

tan x = tan x0 ⇐⇒ x = x0 [π]

sin x = sin x0 ⇐⇒


x = x0 [2π]

ou

x =π−x0 [2π]

x0

π−x0

Équation sin x = sin x0

π

2

−π
2 π

−π

y = sin x

π

2
−π

2

π−π

y = cos x

Cosinus et sinus sont suppo-
sés connus : ils sont définis sur
R, 2π-périodiques, respecti-
vement pair et impair, déri-
vables surR avec

sin′ = cos, cos′ =−sin

Et ∀x ⩾ 0, sin x ⩽ x
(
E4.5

)
.

Proposition 4.34. Propriétés de la fonction tangente

La tangente est π-périodique, impaire, dérivable sur D et, ∀x ∈D , tan′ x = 1+ tan2 x = 1

cos2 x
·

Comme sin x −−−→
x→π

2

1 et cos x −−−−→
x→π

2 −
0+,

tan x = sin x

cos x
−−−−→
x→π

2 −
+∞

On en déduit le tableau de variation de la tangente
sur [0,π/2[ :

x

tan′ x

tan x

0 π
2

+

00
+∞

π
4

1

La fonction tangente admet une infinité d’asymp-
totes, les droites Dk d’équations cartésiennes

x = π

2
+kπ, où k ∈Z

Pour tout x ∈ [0,π/2[, tan x ⩾ x.

π

2
−π

2

π−π

y = tan(x)
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5.4. Cosinus, sinus et tangente hyperboliques

Considérons l’ensemble d’équation cartésienne H : x2 − y2 = 1
dans un repère orthonormé direct R.

Il s’agit d’une hyperbole et on prouve facilement que, dans le
repère R ′ obtenu par rotation de R d’un angle −π/4 autour du

point O, H est le graphe de la fonction X 7→ 1

2X
·

On en déduit la construction ci-contre.

H+H−

Définition 4.35. (cosh et sinh).

On appelle cosinus et sinus hyperboliques
les fonctions, respectivement notées cosh et
sinh, définies par

cosh : R −→ R

x 7−→ ex +e−x

2

, sinh : R −→ R

x 7−→ ex −e−x

2

Cette terminologie est justifiée par l’analogie
cercle-hyperbole. Ces deux fonctions permettent
de paramétrer l’hyperbole H . Lorsque t varie
dansR, le point de coordonnées (cosh t , sinh t ) dé-
crit la branche d’hyperbole H+ (intersection de
l’hyperbole avec le demi-plan d’inéquation x > 0)
et le point de coordonnées (−cosh t , sinh t ) décrit
l’autre branche d’hyperbole H−.

Proposition 4.36.
(
E4.6

)
Les fonctions cosh et sinh sont resp. paire et impaire, dérivables surR, cosh′ = sinh et sinh′ = cosh.

y = cosh x

y = sinh x

y = ex/2

Comme sinh0 = 0, on a le tableau suivant :

x

sinh′ x

sinh x

−∞ +∞
+

−∞−∞ +∞+∞

0

0

Puis, grâce au signe donné ci-dessus du sinus hyperbolique,
on en déduit le tableau de variations de cosh :

cosh x

cosh′ x

cosh x

−∞ 0 +∞
− 0 +

+∞+∞
11

+∞+∞

De plus, on a ∀x ∈R, sinh x < ex

2
< cosh x.

La relation fondamentale circulaire cos2+sin2 = 1 a pour analogue 6 hyperbolique :

6. Cf. l’analogie des paramètrages du cercle d’équation x2 + y2 = 1 et de l’hyperbole d’équation x2 − y2 = 1.
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Proposition 4.37. Relation fondamentale hyperbolique

∀x ∈R, cosh2 x − sinh2 x = 1.

Comme dans le cas circulaire, on peut développer une trigonométrie hyperbolique 7 comportant des
formules d’addition, de duplication, de factorisation, etc. Par exemple, pour tous réels x et y :

cosh(x + y) = cosh x cosh y + sinh x sinh y car


cosh x cosh y = ex+y +e−x−y +ex−y +e−x+y

4

sinh x sinh y = ex+y +e−x−y −ex−y −e−x+y

4

On pourra s’entraîner avec le test
(
E4.7

)
.

Définition 4.38. Tangente hyperbolique
(
E4.8

)
On appelle tangente hyperbolique et l’on note tanh, la fonction

sinh

cosh
·

Proposition 4.39. Propriétés de la tangente hyperbolique
(
E4.9

)
La tangente hyperbolique est impaire et dérivable surR avec tanh′ = 1− tanh2 = 1

cosh2 ·

On a, pour tout réel x,

tanh x = sinh x

cosh x
= ex −e−x

ex +e−x
= 1−e−2x

1+e−2x

Ainsi tanh(x) −−−−−→
x→+∞ 1. Comme tanh′ > 0, la tan-

gente hyperbolique est strictement croissante
sur R. On a tanh0 = 0 et l’équation de la tan-
gente à l’origine au graphe de tanh est y = x.

On complète l’étude précédente en utilisant
l’imparité de tanh.

x

tanh′ x

tanh x

−∞ +∞
+

−1−1 11

0

0

y = tanh(x)

5.5. Polynômes et fractions rationnelles

Définition 4.40. Polynômes et fractions rationnelles

Une fonction P :R→R est dite polynomiale s’il existe n ∈N et (a0, . . . , an) ∈Rn+1 tel que

7. La trigonométrie hyperbolique n’est pas au programme.
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∀x ∈R , P(x) =
n∑

k=0
ak xk

Dans le cas où P est non nulle, la liste (a0, . . . , an) est unique sous l’hypothèse an ̸= 0 : l’entier n est
appellé le degré de P et les ai , les coefficients de P.
On appelle fraction rationnelle tout fonction s’exprimant comme quotient de fonctions polyno-
miales.

On sait qu’une fonction polynomiale de degré n ∈ N admet au plus n racines. Il faut connaître le
résultat suivant que nous démontrerons plus loin dans le cours d’algèbre linéaire.

Proposition 4.40. Décomposition en éléments simples

Soit n ∈N∗ et z1, . . ., zn des nombres complexes distincts et P une fonction polynomiale de degré
strictement inférieur à n. Il existe des nombres complexes λ1, . . ., λn tels que

∀z ∈C\ {z1, . . . , zn} ,
P(z)

(z − z1)×·· ·× (z − zn)
=

n∑
k=1

λk

z − zk

Par exemple, il existe (a,b,c) ∈C3 tels que

∀x ∈R\ {−1,0,1} ,
1

x
(
x2 −1

) = 1

z(z −1)(z +1)
= a

z
+ b

z −1
+ c

z +1

En multipliant par x puis en faisant tendre l’expression vers 0, on obtient :

1(
x2 +1

) −−−→
x→0

1 et a + bx

x −1
+ cx

x +1
−−−→
z→0

a

d’où a = 1. En multipliant par x −1 puis en cherchant la limite en 1, on trouve b = 1
2 et en procédant

de façon analogue on aboutit à c = 1
2 ·

6. Relations de comparaison des fonctions

Dans ce paragraphe, nous allons transposer les trois relations de comparaisons sur les suites dans le
cadre fonctionnel.

6.1. La négligeabilité

Les définitions et notations sont identiques au cas séquentiel en remplaçant « à partir d’un certain
rang » par « au voisinage de x0 ».

Définition 4.41. La négligeabilité, notations o (Landau) et ≪ (Hardy)

Soit u et v des fonctions définies sur un même voisinage de x0 ∈R. On dit que u(x) est négligeable
devant v(x) au voisinage de x0 si

∃ε définie au voisinage de x0 telle que ε(x) −−−−→
x→x0

0 et u(x) = ε(x)v(x) au voisinage de x0.
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On note alors u(x) =
x→x0

o(v(x)) ou u(x) ≪
x→x0

v(x). On peut omettre x → x0 s’il n’y a pas ambi-

guité.

Si v(x) ̸= 0 au voisinage épointé de x0, alors u(x) =
x→x0

o(v(x)) équivaut à
u(x)

v(x)
−−−−→
x→x0

0.

Il faut bien comprendre que cette relation de comparaison ne concerne que l’ordre de grandeur en
valeur absolue : un fonction positive peut être négligeable par rapport à une fonction positive. On a
x ≪ −x2 en +∞. La notation usuelle f (x) = o

(
f (x)

)
est abusive. On a 1 = o(x) et

p
x = o(x) mais cet

deux « o(x) » ne sont pas égaux.

Dangers de la notation o
(
g (x)

)
En résumé, l’égalité f (x) = o

(
g (x)

)
en x0 n’en est pas une, il faut la comprendre comme une relation

binaire. En particulier, on explicitera tout « o
(
g (x)

)
» avant de l’utiliser dans un calcul. On reviendra

à la définition en l’écrivant sous la forme g (x)ε(x) au voisinage de x0 avec ε qui tend vers 0 en x0.

Voici par exemple l’échelle de comparaison des puissances de x en +∞ :

· · · ≪
x→+∞

1

x3
≪

x→+∞
1

x2
≪

x→+∞
1

x
≪

x→+∞ 1 ≪
x→+∞ x ≪

x→+∞ x2 ≪
x→+∞ x3 ≪

x→+∞ · · ·

L’échelle de comparaison des puissances de x en 0 est inversée par rapport à la précédente :

· · · ≪
x→0

x3 ≪
x→0

x2 ≪
x→0

x ≪
x→0

1 ≪
x→0

1

x
≪

x→0

1

x2
≪

x→0

1

x3
≪

x→0
· · ·

Comme dans le cas des suites, il faut connaître la comparaison des fonctions usuelles en +∞.

Proposition 4.42. Croissances comparées

Pour a > 0, b > 0 et c > 0, on a (ln x)a ≪ xb ≪ ecx ≪ xx et e−cx ≪ x−b ≪ (ln x)−a en +∞.

Le cas ab > 0 est le seul où la comparaison de (ln x)a et xb n’est pas directe car les deux fonctions
tendent alors vers +∞ (si a > 0 et b > 0) ou 0 (si a < 0 et b < 0). Par exemple, si a > 0 et b < 0, alors
(ln x)a −−−−−→

x→+∞ +∞ et xb −−−−−→
x→+∞ 0 d’où xb ≪ (ln x)a en +∞.

On pourra s’entraîner au moyen du test
(
E4.10

)
.

Les règles de calcul, rassemblées ci-dessous, sont faciles à retenir tant leurs démonstrations sont
courtes et naturelles.

Proposition 4.43. Règles de calcul sur les petits ô

Soit u, v , w , f et g des fonctions à valeurs réelles définies au voisinage de x0 ∈R.

a. ∀µ ∈R∗, o (u(x)) =
x→x0

o
(
µu(x)

)
(absorption des constantes multiplicatives) ;

b.

 f (x) =
x→x0

o (u(x))

g (x) =
x→x0

o (u(x))
=⇒ f (x)+ g (x) =

x→x0
o (u(x)) (la somme de deux petits ô est un petit ô) ;
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c. f (x) =
x→x0

o(1) si et seulement si f (x) −−−−→
x→x0

0 ;

d.

 u(x) =
x→x0

o (v(x))

v(x) =
x→x0

o (w(x))
=⇒ u(x) =

x→x0
o (w(x)) (transitivité de la relation ô) ;

e.

 f (x) =
x→x0

o (u(x))

g (x) =
x→x0

o (v(x))
=⇒ f (x)g (x) =

x→x0
o (u(x)v(x)) (comptabilité de o avec ×) ;

f. f (x) =
x→x0

o (u(x)) =⇒ f (x)g (x) =
x→x0

o
(
u(x)g (x)

)
(comptabilité de p avec ×) ;

g. ∀α> 0, u(x) =
x→x0

o (v(x)) =⇒ u(x)α =
x→x0

o (v(x)α) (pour des fonctions à valeurs dansR+).

Proposition 4.44. Composition à droite

Soit x0 ∈R, u et v définies sur un voisinage V de x0, φ à valeurs dans V telle que φ(y) −−−−→
y→y0

x0.

Si u(x) =
x→x0

o (v(x)), alors u
(
φ(y)

) =
y→y0

o
(
v

(
φ(y)

))
.

Par exemple, si u(x) ≪
x→+∞ v(x), alors u

(
x2

) ≪
x→+∞ v

(
x2

)
. C’est bien un résultat sur la composition à

droite : pour tout φ à valeur dans V de limite x0 en y0,

u = o(v) en x0 =⇒ u ◦φ = o(v ◦φ) en y0 (on a composé à droite u et v)

On prendra garde à la composition à gauche. Même sous des conditions simples portant sur la fonc-
tion f : D →R, la relation u = o(v) n’entraîne pas en général que f ◦u = o( f ◦v). Par exemple en +∞,
x = o

(
x2

)
mais ln x n’est pas un petit ô de ln x2 car ln x2 = 2ln x pour x > 0.

Comme dans le cas séquentiel, il faut être prudent avec la composition à gauche et l’addition : f (x) ≪
x→x0

u(x)

g (x) ≪
x→x0

v(x)
f (x)+ g (x) ≪

x→x0
u(x)+ v(x)

Par exemple 1 = o(x) et 1 = o(1−x) mais 2 ̸= o(1) en +∞.

6.2. L’équivalence

Définition 4.45. L’équivalence, notation ∼
Soit u et v des fonctions définies au voisinage de x0 ∈R. On dit que u(x) est équivalente à v(x) au
voisinage de x0 si

∃δ définie au voisinage de x0 telle que δ(x) −−−−→
x→x0

1 et u(x) = δ(x)v(x) au voisinage de x0.

On note alors u(x) ∼
x→x0

v(x).

Si v(x) ̸= 0 au voisinage épointé de x0, alors u(x) ∼
x→x0

v(x) équivaut à
u(x)

v(x)
−−−−→
x→x0

1.
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L’équivalence est une relation d’équivalence sur l’ensemble des suites de nombres réelsRN (les pro-
priétés de réflexivité et de symétrie sont évidentes).

Proposition 4.45. Règles de calcul sur les équivalents

Soit u, v , w , f et g des fonctions à valeurs réelles définies au voisinage de x0 ∈R.

a. u(x) ∼
x→x0

v(x) =⇒ o (u(x)) = o (v(x)) ;

b. u(x) ∼
x→x0

v(x) et v(x) ∼
x→x0

w(x) =⇒ u(x) ∼
x→x0

w(x) (transitivité de la relation ∼) ;

c. f (x) ∼
x→x0

u(x) et g (x) ∼
x→x0

v(x) =⇒ f (x)g (x) ∼
x→x0

u(x)v(x) (comptabilité de ∼ avec ×).

d. f (x) ∼
x→x0

g (x) =⇒ f (x)u(x) ∼
x→x0

g (x)u(x) (comptabilité de ∼ avec ×).

e. f (x) ∼
x→x0

g (x) =⇒ 1

f (x)
∼

x→x0

1

g (x)
;

Les propriétés d. et g. peuvent se résumer ainsi : pour calculer un équivalent d’un produit (resp. d’un
quotient), il suffit de former le produit (resp. le quotient) des équivalents. Comme pour la négligea-
bilité, il n’existe pas de résultat de ce type pour les sommes. La relation ∼ n’est pas compatible avec
l’addition :  f (x) ∼

x→x0
g (x)

u(x) ∼
x→x0

v(x)
f (x)+u(x) ∼

x→x0
g (x)+ v(x)

Par exemple en 0, x ∼ x + x3 et −x + x2 ∼−x mais x2 ̸∼ x3. En particulier, on ne peut ajouter membre
à membre des équivalences ni faire passer un terme de gauche à droite en le transformant en son
opposé(mais c’est possible pour le produit) :

f (x) ∼
x→x0

g (x) f (x)+u(x) ∼ g (x)+u(x)

f (x)+u(x) ∼ g (x) f (x) ∼ g (x)−u(x)

Proposition 4.46. Composition à droite dans des équivalents

Soit x0 ∈R, u et v définies sur un voisinage V de x0, φ à valeurs dans V telle que φ(y) −−−−→
y→y0

x0.

Si u(x) ∼
x→x0

v(x), alors u
(
φ(y)

) ∼
y→y0

v
(
φ(y)

)
.

Ainsi en +∞, u(x) ∼ v(x) =⇒ u(2x) ∼ v(2x). Comme pour la négligeabilité, il n’ y a pas de résultat
général sur la composition à gauche dans des équivalents, i.e. pour une fonction f : D →R

u(x) ∼
x→x0

v(x) f
(
u(x)

) ∼
x→x0

f
(
v(x)

)
en toute généralité. Par exemple, x +1 ∼ x mais ex+1 ̸∼ ex car ex+1

ex = e. Il existe cependant des cas où
l’on peut composer à gauche, comme celui des puissances et du logarithme.
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Proposition 4.47. Règles de composition à gauche dans des équivalents

Pour des fonctions u et v définies et positives au voisinage de x0 ∈R :

a. ∀α ∈R, u(x) ∼
x→x0

v(x) =⇒ u(x)α ∼
x→x0

v(x)α ;

b. Si u(x) −−−−→
x→x0

ℓ ∈R+ \ {1} et u(x) ∼
x→x0

v(x), alors lnu(x) ∼
x→x0

ln v(x).

Le signe au voisinage d’un point est conservé par équivalence mais pas le sens de variation. En effet,

1+ 1

x
∼

x→+∞ 1− 1

x

les expressions de gauche et droite étant respectivement décroissante et croissante par rapport à x.

Proposition 4.48.

Deux fonctions équivalentes en x0 sont du même signe au voisinage de x0.

6.3. La domination

Comme nous l’avions mentionné dans le chapitre dédié aux suites, cette relation sera moins utilisée
que les deux précédentes et vérifie des propriétés analogues.

Définition 4.49. La domination, notation O (Landau)

Soit u, v définies au voisinage de x0 ∈R. On dit que u(x) est dominée par v(x) au voisinage de x0 si

∃b définie et bornée au voisinage de x0 telle que u(x) = b(x)v(x) au voisinage de x0.

On note alors u(x) =
x→x0

O(v(x)).

Si v(x) ̸= 0 au voisinage épointé de x0, alors u(x) =
x→x0

O
(
v(x)

)
équivaut à

u

v
est bornée au voisinage

épointé de x0.

Comme dans le cas des « petits ô », il s’agit d’un abus de notation. Il ne s’agit pas d’une égalité mais
d’une relation. Il est clair que u(x) = o

(
v(x)

)
implique que u(x) = O

(
v(x)

)
car une fonction qui tend

vers 0 quand x tend vers x0 est bornée au voisinage de x0. La réciproque est fausse, on a par exemple

en +∞, 2024x2 +1 = O
(
x2

)
mais 2024x2 ̸= o

(
x2

)
car l’expression 2024x2+1

x2 ne tend pas vers 0 quand x
tend vers +∞.

Proposition 4.50. Règles de calcul

Soit u, v , w , t définies au voisinage de x0 ∈R. On a en x0 :

a.

{
u(x) = O

(
v(x)

)
v(x) = O

(
w(x)

) =⇒ u(x) = O
(
w(x)

)
(transitivité de O) ;

b. u(x) =
x→x0

O(1) si et seulement si u est bornée au voisinage de 0 ;
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c.

{
u(x) = O

(
v(x)

)
w(x) = O

(
t (x)

) =⇒ u(x)w(x) = O
(
v(x)t (x)

)
(compatibilité de O avec ×) ;

d. u(x) = O
(
v(x)

) =⇒ u(x)w(x) = O
(
v(x)w(x)

)
(compatibilité de O avec ×).

6.4. Levée d’une forme indéterminée par calcul asymptotique

Au delà du signe, une autre propriété est conservée par équivalence : l’existence et la valeur d’une
limite.

Proposition 4.51.

Si f (x) ∼
x→x0

g (x) et g (x) −−−−→
x→x0

ℓ ∈R, alors f (x) −−−−→
x→x0

ℓ.

Par exemple en +∞, x2 − ln x ∼ x2 et ex −x2024 ∼ ex car ln x = o
(
x2

)
et x2024 = o

(
ex

)
. Ainsi

x2 − ln x

ex −x2024
∼

x→+∞
x2

ex

Comme x2 = o
(
ex

)
en +∞, on en déduit que

x2 − ln x

ex −x2024
−−−−−→
x→+∞ 0.

Ce type de calcul, qualifié d’asymptotique, est bien plus efficace que les méthodes standards.

Levée d’une FI par calcul asymptotique

On trouve une chaîne d’équivalents en x0

f (x) ∼ g1(x) ∼ ·· · ∼ gp (x)

où gp (x) a un comportement connu en x0. Si gp (x) −−−−→
x→x0

ℓ, alors on en conclut que f (x) −−−−→
x→x0

ℓ.

Dans les calculs, on aura intérêt à chercher les équivalents les plus simples possibles. Il est clair que
l’équivalent le plus simple d’une fonctions de limite réelle non nulle est sa limite.

Proposition 4.52.

Pour x0 ∈R, une fonction u définie au voisinage de x0 et ℓ ∈R∗, u(x) ∼
x→x0

ℓ ⇐⇒ u(x) −−−−→
x→x0

ℓ.

Équivalents usuels
(
E4.11

)
Pour f dérivable en 0 avec f ′(0) ̸= 0, on a f (u)− f (0) ∼ f ′(0)u au voisinage de 0.
On en déduit les cas usuels suivants :
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a. eu −1 ∼
u→0

u ;

b. ln(1+u) ∼
u→0

u ;

c. sinu ∼
u→0

u ;

d. cosu −1 ∼
u→0

−u2

2
;

e. tanu ∼
u→0

u ;

f. (1+u)α−1 ∼
u→0

αu

(pour tout α ∈R).

Commençons par un quotient d’expressions de limites nulles. En 0, on a

f (u) :=
p

1+u −1

cosu −1
∼

u
2

−u2

2

= − 1

u

Ainsi f n’a pas de limite en 0 mais admet des limites latérales en 0 valant respectivement +∞ et −∞
à gauche et à droite. Poursuivons par une expression tend vers 1 à une puissance tendant vers l’infini
en valeur absolue. En 0, on a

g (u) := (1+ ln(1+u))
1

sinu = exp

(
ln(1+ ln(1+u))

sinu

)
La stratégie est ici d’étudier la limite de l’expression dans l’exponentielle pour conclure par com-
position des limites (car nous ne pouvons a priori composer par l’exponentielle à gauche dans des
équivalents). On a en 0 :

ln(1+ ln(1+u))

sinu
∼ ln(1+u)

u
∼ u

u
= 1

car ln(1+u) tend vers 0 avec u. On en déduit que
ln(1+ ln(1+u))

sinu
−−−→
u→0

1 puis g (u) −−−→
u→0

e par compo-

sition des limites.

Comme les principaux équivalents et croissances comparées sont formulées en 0, il est préférable de
se ramener à ce cas par changement de variable.

Équivalent en un point ̸= 0

Pour rechercher un équivalent de f (x) en un point x0 ̸= 0, on peut effectuer le changement de
variable x = x0 +u. On est ramené à rechercher unéquivalent de f (x0 +u) quand u tend vers 0.

Déterminons un équivalent de tan x en π
2 · On écrit x = u + π

2 et on étudie l’expression quand u tend
vers 0 :

tan
(
u + π

2

)
= sin

(
u + π

2

)
cos

(
u + π

2

) = cosu

−sinu
∼ 1

−u

Comme x − π
2 −−−→

x→π
2

0, on en déduit par composition à droite que tan x ∼
x→π

2

1
π
2 −x

·

Étudions à présent le comportement de
2x −4

3x −9
quand x tend vers 2. On écrit x = 2+u et on étudie

l’expression quand u tend vers 0 :

2x −4

3x −9
= 22+u −4

32+u −9
= 4

9
× 2u −1

3u −1
= 4

9
× eu ln2 −1

eu ln3 −1
∼ 4u ln2

9u ln3
= 4ln2

9ln3

Ainsi
2x −4

3x −9
−−−→
x→2

4ln2

9ln3
·
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7. Fonctions à variable ou valeurs complexes

Une fonction f deR dans C doit être comprise comme une courbe : f (t ) est l’affixe à l’instant t d’un
point du plan supposé muni d’un repère.

Étudions par exemple le roulement sans glissement d’un « petit »
cercle de rayon 1

4 sur un « grand » cercle de rayon 1.

Considérons le repère orthonormé direct d’origine le centre du
grand cercle tel que le point de contact entre les deux cercles soit
celui de coordonnées (1,0).

On s’intéresse à la trajectoire de ce point initial de contact (en
bleu sur la figure ci-contre).

Lorsque le point de contact entre les deux cercles a tourné de t
radians, le point M a tourné de 4t radian sur le petit cercle.

On en déduit l’affixe du point M :

f (t ) =
(
1+ 1

4

)
e i t + 1

4
e i (5t+π) = 5

4
e i t − 1

4
e5i t (trajectoire de la famille des épicycloïdes)

π

4t

t

t

On peut représenter en dimension trois le graphe d’une
fonction f deC dansR en traçant les points de coordon-
nées

(
Re z, Im z, f (z)

)
quand z varie dans C, cf. ci-contre

le graphe de
z 7→ cos|z|

Pour une fonction de C dans C, il n’existe pas de repré-
sentation commode car le graphe d’une telle application
est un objet mathématique de dimension quatre :(

Re z, Im z,Re f (z), Im f (z)
) −4 −2 0 2 4 −4

−2
0

2
4

−1

0

1

On peut cependant l’appréhender en représentant les graphes des deux applications Re f et Im f ,
voire en représentant celui de | f |.
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Dans le chapitre AN 1, nous avons défini au sein du paragraphe dédié à la topologie les notions de
voisinage et de point adhérant, dansK =R ou C. La définition de la limite au moyen des voisinages
donnée dans ce cours vaut pour des fonctions dont le domaine est une partie deC et à valeurs dansC
à partir du moment où les points et les limites considérées sont dans C. La définition de f (z) −−−→

z→ω
ℓ

où ω ∈C est adhérant au domaine D de f et ℓ ∈C est :

∀ε> 0, ∃α> 0, ∀z ∈D ∩B(ω,α) , f (z) ∈ B(ℓ,ε)

c’est-à-dire, en explicitant les définitions des boules ouvertes au moyen du module :

∀ε> 0, ∃α> 0, ∀z ∈D , |z −ω| < α =⇒ ∣∣ f (z)−ℓ∣∣ < ε

Dans le cas complexe, « faire tendre z vers l’infini » n’a aucun sens : on peut en effet tendre vers l’infini
dans une infinité de direction. On peut néanmoins s’affranchir de cette difficulté par la définition de
f (z) −−−−−→

|z|→+∞
ℓ :

∀ε> 0, ∃M ∈R , ∀z ∈D , |z| > M =⇒ ∣∣ f (z)−ℓ∣∣ < ε

De même pour
∣∣ f (z)

∣∣−−−−−→
|z|→+∞

+∞ :

∀M′ ∈R , ∃M ∈R , ∀z ∈D , |z| > M =⇒ ∣∣ f (z)
∣∣ > M′

ou encore
∣∣ f (z)

∣∣−−−→
z→ω

+∞ :

∀M > 0, ∃α> 0, ∀z ∈D , |z −ω| < α =⇒ ∣∣ f (z)
∣∣ > M

Par exemple, pour d ∈N∗, a0,. . ., ad dansC avec ad ̸= 0, on a∣∣∣∣∣ d∑
k=0

ak zk

∣∣∣∣∣−−−−−→|z|→+∞
+∞

et pour le justifier, il suffit d’appliquer l’inégalité triangulaire : pour tout nombre complexe z∣∣∣∣∣ d∑
k=0

ak zk

∣∣∣∣∣ ⩾ |ad | |z|d −
d−1∑
k=0

|ak | |z|k

On conclut en remarquant que |ad |xd −
d−1∑
k=0

|ak |xk −−−−−→
x→+∞ +∞.

Les opérations sur les limites s’étendent naturellement à ce cadre, avec les précautions d’usage pour
les formes indéterminées. Revenons par exemple au théorème de décomposition en éléments simples
(cf. 5.5 à la page 24). Ill existe (a,b,c) ∈C3 tels que

∀z ∈C\ {−i ,0, i } ,
1

z
(
z2 +1

) = 1

z(z − i )(z + i )
= a

z
+ b

z − i
+ c

z + i

En multipliant par z puis en faisant tendre l’expression vers 0, on obtient :

1(
z2 +1

) −−−→
z→0

1 et a + bz

z − i
+ cz

z + i
−−−→
z→0

a

d’où a = 1. En multipliant par z − i puis en cherchant la limite en i , on trouve b =−1
2 et en procédant

de façon analogue on aboutit à c =−1
2 ·

On peut se ramener à des limites réelles au moyen de l’équivalence suivante :

f (z) −−−→
z→ω

ℓ ⇐⇒ Re f (z) −−−→
z→ω

Reℓ et Im f (z) −−−→
z→ω

Imℓ
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8. Tests

4.1. 4 �

Calculer lorsqu’elles existent les limites suivantes :

a. lim
x→−∞

x2 +2|x|
x

; b. lim
x→2

x2 −4

x2 −3x +2
; c. lim

x→1

x −1

xn −1
·

4.2. 4 �

Étudier le comportement en 0 de la fonction définie par f (x) = x2
⌊

1

x

⌋
.

4.3. 4 �

Résoudre l’inéquation ln |x +1|− ln |2x +1|⩾ ln2.

4.4. 4 �

Résoudre dansR l’équation cos x + sin x = 0.

4.5. 4 �

Étudier et représenter la fonction f définie surR par f (x) = (cos x) (1+cos x).

4.6. 4 �

Résoudre cosh x +2sinh x = 2 dansR.

4.7. 4 �

a. Établir que le sinus hyperbolique réalise une bijection deR surR.

b. Exprimer sinh−1 au moyen du logarithme néperien. Tracer le graphe de sinh−1.

4.8. 4 �

Tableau de variation et courbe de la fonction définie par f : x 7→ x cosh(x)− sinh(x)

cosh(x)
·

4.9. 4 �

Établir que ∀x ∈R, arctan
(
ex)= arctan

(
tanh

(x

2

))
+ π

4
·

4.10. 4 �

Comparer au voisinage de 0 les fonctions f : x 7→ x ln
(
1+x2

)
et g : x 7→ x2.

4.11. 4 �

Lever les formes indéterminées suivantes pour u → 0 :

a.
1

u2
− 1

sin4 u
; b.

2u −1

sinu
; c.

2u −1− sinu

ln(1+u)
; d. (1+ tanu)cotan3 u .

LLG . HX 6 33



2025-2026 Laurent Kaczmarek

9. Solutions

4.1. ; �

a. Comme

∀x ̸= 0,
x2 +2|x|

x
= x +2× signe(x)⩽ x +2

on trouve −∞.

b. Comme

∀x ̸= 2,
x2 −4

x2 −3x +2
= x +2

x −1

on trouve 4.

c. L’énoncé n’a de sens que pour n ⩾ 1. Pour
x ̸= 1, on a

xn −1

x −1
=

n−1∑
k=0

xk

Ainsi, on trouve
1

n
.

4.2. ; �

Pour tout x ̸= 0, on a

1

x
−1 <

⌊
1

x

⌋
⩽

1

x

d’où, puisque x2 > 0, x − x2 < f (x) ⩽ x et donc,
d’après le théorème d’encadrement,

f (x) −−−→
x→0

0

4.3. ; �

L’inéquation est définie sur R \ {−1,−1/2} et est
équivalente à

(x +1)2

(2x +1)2
⩾ 4

ie (x +1)2 −22(2x +1)2 ⩾ 0, soit encore

(x +1−4x −2︸ ︷︷ ︸
=−3x −1

)(x +1+4x +2︸ ︷︷ ︸
= 5x +3

)⩾ 0

On trouve

[
−3

5
,−1

2

[
∪

]
−1

2
,−1

3

]
.

4.4. ; �

Pour tout réel x, cos x = −sin x si et seulement
si cos x = cos(x + π/2), ce qui équivaut à x =
−x −π/2[2π] ou x = x +π/2[2π]. Cette dernière
équation n’ayant pas de solution, cos x =−sin x
si et seulement si 2x =−π/2[2π], ie x =−π/4[π].
L’ensemble des solutions est donc{

−π
4
+kπ ; k ∈Z

}
4.5. ; �

La fonction f est paire et 2π-périodique, on
l’étudie sur [0,π]. La fonction f est dérivable sur
R et, pour tout x ∈R,

f ′(x) =−sin(x)−2sin(x)cos(x)

=−2sin(x)

(
1

2
+cos(x)

)
On en déduit que le signe de f ′(x) pour x ∈ [0,π]
est l’opposé de celui de 1/2+cos(x), ainsi{

f ′(x)⩽ 0 pour x ∈ [0,2π/3]

f ′(x)⩾ 0 pour x ∈ [2π/3,π]

D’où les variations puis le graphe de f :

x 0 2π
3 π

f ′(x) − +

f (x)
2

−1
4

0

0 π

2π

3

4.6. ; �

En posant t = ex , l’équation est équivalente à

3t − 1

t
= 4

c’est-à-dire 3t 2 − 4t − 1 = 0, donc t = 2±p
7

3
·

Puisque t = ex > 0, on trouve l’unique solution
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x = ln

(
2+p

7

3

)

4.7. ; �

a. Cela découle des variations du sinus hyper-
bolique qui ont été étudiées dans le cours :
sinh réalise une bijection strictement crois-
sante deR sur sinh(R) =R.

b. Soit y ∈R et x ∈R, on a

x = sinh(y) ⇐⇒ e y −e−y = 2x

⇐⇒ e y −1/e y = 2x

⇐⇒ (
e y)2 −2xe y −1 = 0

Le discriminant du trinôme u2 − 2xu + 1
étant 4x2 +4, il admet pour solutions,

x ±
√

1+x2

Puisque seule x +
p

1+x2 est positive,

sinh−1(x) = ln
(
x +

√
1+x2

)
On trace le symétrique du graphe de sinh
par rapport à la première bissectrice du re-
père :

y = sinh(x)

y = sinh−1(x)

4.8. ; �

On remarque que f est impaire et qu’elle est dé-
finie et dérivable sur R puisque cosh ne s’an-
nule pas. De plus, ∀x ∈ R, f (x) = x − tanh(x),
ainsi f ′ = tanh2 ⩾ 0. La fonction f est donc
croissante surR. On a

f (x) −−−−−→
x→+∞ +∞ et f (x) −−−−−→

x→+∞ −∞

Comme

f (x)−x =− tanh(x) −−−−−→
x→±∞ ∓1

les droites d’équations y = x+1 et y = x−1 sont
asymptotes au graphe de f respectivement en
−∞ et +∞.

4.9. ; �

Posons

f : R −→ R

x 7−→ arctan(ex)−arctan(tanh(x/2))

Cette fonction est dérivable sur R en tant que
somme de fonctions dérivables surR et ∀x ∈R,

f ′(x) = ex 1

1+ (ex)2
− 1

2

1− tanh2(x/2)

1+ tanh2(x/2)

= ex

1+e2x
− 1

2

1− tanh2(x/2)

1+ tanh2(x/2)

= ex

1+e2x
− 1

2

cosh2(x/2)− sinh2(x/2)

cosh2(x/2)+ sinh2(x/2)

= ex

1+e2x
− 1

2

1

(ex +e−x)/2

= ex

1+e2x
− ex

1+e2x
= 0

La fonction f est donc constante surR. Comme
f (0) = arctan(1) =π/4, on a

∀x ∈R, arctan
(
ex)= arctan(tanh(x/2))+ π

4
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4.10. ; �

On a pour tout réel x,∣∣ f (x)
∣∣⩽ |x|3

donc f (x) ≪
x→0

g (x).

4.11. ; �

a. Comme sin−4(u) ∼
u→0

u−4 et u−4 ≪
u→0

u−2, on
a

1

u2
− 1

sin4(u)
∼

u→0

1

u2

et ainsi
1

u2
− 1

sin4(u)
−−−→
u→0

+∞.

b. On a

2u −1

sin(u)
= eu ln(2) −1

sin(u)
∼

u→0

ln(2)u

u

ainsi
2u −1

sin(u)
−−−→
u→0

ln(2).

c. On a

2u −1 = eu ln(2) −1 =
u→0

u ln(2)+o(u)

et sin(u) = u +o(u) ainsi

2u −1− sin(u) = (ln(2)−1)u +o(u)

et donc

2u −1− sin(u)

sin(u)
= ∼

u→0

(ln(2)−1)u

u

Ainsi
2u −1− sin(u)

ln(1+u)
−−−→
u→0

ln(2)−1.

d. Comme tan(u) −−−→
u→0

0, on a

cotan3(u) ln(1+ tan(u)) ∼
u→0

cotan3(u) tan(u)

∼
u→0

cotan2(u)

Comme cotan2(u) −−−→
u→0

+∞, on a

(1+ tan(u))cotan3(u) −−−→
u→0

+∞
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