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- AN 5 | Fonctions continues

Le cours d’analyse se poursuit par U'étude des fonctions continues. Lorsqu'elles sont
définies sur un intervalle de R, ces dernieres jouissent de propriétés globales re-
marquables.

Le parlement de Londres, Claude Monet
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rue de maniere tardive, vers le début du Xix¢ siecle. Pour Euler par exemple, le sens du mot

« continu » n’était pas le méme que celui qu’il recouvre de nos jours, et qui va faire I'objet du
présent chapitre. En effet, pour Euler, une fonction continue était une fonction définie par une seule
expression « analytique ».

L A notion méme de continuité, qui est une évolution de celle de limite, est elle aussi appa-

Ainsi, la fonction définie sur R par f(x) = xsi x <0 et f(x) = 2x
si x > 0 n’était pas une fonction continue pour Euler, puisqu’elle
nécessite pour la définir deux expressions analytiques, alors qu’elle
le sera pour nous.

Au sens moderne et actuel, une fonction continue sur un inter-
valle est une fonction dont le graphe n’est pas « déchiré » en plu-
sieurs morceaux; alors que pour Euler, c¢’était I’expression de défi-
nition qui ne devait pas étre constituée de plusieurs morceaux dis-
tincts. Les mathématiciens considéraient implicitement que toutes
les fonctions « définies par une seule formule » qu'’ils étudiaient
étaient « continues », ou a tout le moins ils ne se posaient pas com-
pletement la question de la continuité au sens ou nous la connais-
Leonhard Euler (1707-1783)  sons aujourd hui.

C’est a Cauchy, Bolzano et Weierstrass que 'on doit la rigueur des définitions et des preuves en ce
domaine, permettant ainsi d’asseoir I'analyse sur des bases solides et cohérentes.

Voici comment Cauchy présente la continuité des fonctions dans son Analyse algébrique de 1821 :

« Soit f(x) une fonction de la variable x, et supposons que, pour
chaque valeur de x intermédiaire entre deux limites données,
cette fonction admette constamment une valeur unique et fi-
nie. Si, en partant d’une valeur de x comprise entre ces limites,
on attribue a la variable x un accroissement infiniment petit «,
la fonction elle-méme recevra pour accroissement la différence
f(x+a)— f(x), qui dépendra en méme temps de la nouvelle va-
riable a et de la valeur de x. Cela posé, la fonction f(x) sera, entre
les deux limites assignées a la variable x, fonction continue de
cette variable, si, pour chaque valeur de x intermédiaire entre ces
limites, la valeur numérique de la différence f(x+a)— f(x) décroit
indéfiniment avec celle de «. »

Cauchy (1789-1857)

On mesure la difficulté de donner un sens précis a ce type de définition. De plus, la distinction entre
ce que nous allons appeler la continuité et la continuité uniforme n’apparait pas clairement dans ce
texte de Cauchy.

De méme, la notion de dérivabilité n’était pas encore a cette époque com-
pletement dissociée de celle de continuité.

Lun des théorémes remarquables sur les fonctions continues est celui
des valeurs intermédiaires. Stevin 'utilisa, sans le prouver, pour appro-
cher les racines d'un polynome. La preuve complete et rigoureuse de ce
résultat revient a Bolzano, qui rejetait les démonstrations fondées sur la
« géométrie » et la « mécanique », parce qu'’il les jugeait insuffisantes (de
méme que celles qui montraient ainsi la possibilité de décomposer tout
polynome a coefficients réels en produit de termes du premier ou du se-
Bolzano (1781-1848) cond degré a coefficients réels).
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C’est finalement a Weierstrass que 1’on doit la définition formelle des no-
tions de limite et de continuité, en termes de € et de o, que nous utilisons
aujourd’hui :

Wir nennen dabei eine Grdsse y eine stetige Function von x, wenn man
nach Annahme einer Grdsse € die Existenz von & beweisen kann, sodass
zu jedem Wert zwischen xp — &...xp + 0 des Zugehdrige Wert von y zwi-
schen yy—€...yy +¢€ liegt.

Ci-contre, le mathématicien berlinois Karl Wilheim Weierstrass (1815-
1897). Partant d'une preuve incomplete de Bolzano, il prouva que I'image
d'un segment par une fonction continue est un segment. //9&%4%%

1. Continuité ponctuelle et propriétés locales des fonctions continues

D’un pont de vue heuristique, une fonction continue sur un intervalle est une fonction dont le graphe
est «d'un seul tenant».

i /2 s i

Xo X0

Les fonctions fj et f, présentent une discontinuité en xj. La fonction f3 est continue en tout point. La
fonction f; est continue en tout point sauf 0.

1.1. Continuité en un point

Une fonction est continue en un point de son ensemble de définition si elle admet une limite en ce
point, ce qui se reformule de la facon suivante :
Définition 5.0. Continuité ponctuelle, continuités latérales (7 5.1)

Soit Aune partiede R, f:A—RetacA.

= On dit que f est continue au point a si f(x) — f(a).

= Si aestadhérenta An]—oo, al, on dit que f est continue a gauche au point a si f(x)

f(a).
f(a).

X—a—

= Si a est adhérent a An]a, +oo[, on dit que f est continue a droite au point a si f(x) "
X—a

Ainsi, f est continue au point a si et seulement si

Ye>0,3a>0, YxeA, [x—al <a = |f(x)—f(a)|<e
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r La continuité en un point est une propriété locale
S

oit f:A—R,acAetVeY,; festcontinue en ac€ A si et seulement si f|y est continue en a.

Pour a € R\Z, notons n:= |a]. Comme n < a < n+1,'intervalle | n, n+1[ est
— un voisinage de a sur lequel la fonction partie entiere est constante égale a
n, cette fonction est donc continue au point a.

En revanche, en un point a de Z, la fonction partie entiere n'admet aucune
— limite en a (car elle admet des limites a gauche et a droite distinctes en ce
point), elle n’est donc pas continue en a.

Pour établir la continuité de la fonction valeur absolue en a € IR, il suffit d’appliquer une variante de
I'inégalité triangulaire

VxeR, [lxI-lal| <|x—al
dont on déduit que la définition de la continuité en a est vérifiée (pour tout € > 0, le réel o := ¢

convient). Cette démonstration s’adapte facilement a des fonctions vérifiant une inégalité un peu
plus générale que ci-dessus.

Définition 5.1. Fonctions lipschitziennes

Soit k € R}. Une fonction f: A — R est dite k-lipschitzienne si
Vix,y) €A®, [f0) - F)| < klx—yl

On dit aussi que f est lipschitzienne de rapport k. Une fonction f est dite lipschitzienne s’il existe
un réel k strictement positif tel que f soit k-lipschitzienne.

En termes plus géométriques, une fonction est k-lipschitzienne si et seulement si toutes les cordes de
son graphe ont une pente inférieure ou égale a k en valeurs absolue.

Corde de pente - y=fl@+kx-a

f-fx
y—x

~ y=fla)-k(x—a)

Linégalité |f(x) —f(a)| < k|x—al équivauta —k|x—al < f(x) - f(a) < klx—al, i.e.
Vx2>a, fla)-k(x—a) < f(x) < k(x-a) et Vx< a, f(@+k(x-a) < f(x) < fla)-k(x-a)

Linterprétation géométrique de ces deux inégalités (la variable a étant fixée) est donc claire : le graphe
de f est contenu dans un cone de dimension deux, ou de fagon plus imagée, un entonnoir.
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A

Y

Pour une fonction k-lipschiztienne, la définition de la continuité en a € A est vérifiée pour a:= ¢

Toute fonction lipschitzienne est donc continue, mais la

réciproque est fausse. Pour trouver un contre-exemple, b

il suffit de trouver une fonction continue possédant des /

cordes de pente arbitrairement gre;nde. Laracine carrée sur | Grandes L

[0,1] convient, tout comme x — X
VX-v0 1 x> —0? 4 . R

— —— +o00 et =X +o00
x-0 VX x—0+ x-0 X—+00

sur R : -7 pentes -~

Proposition 5.2. Continuité vs. continuités latérales

Soit f: A— R et a un point intérieur de A. Une fonction est continue en a si et seulement si elle est
continue a gauche et a droite au point a.

Considérons par exemple la fonction définie sur R par f(¢) := || + (¢t — [ ] )2,

1[de a (ou n:= |al), f est polynomiale. Soit n € Z. Pour t € [n, n+

La fonction f est continue en a € R\Z car sur le voisinage | n, n+ ‘ /
1Lona f(t)=n+(t—n)®etpourte[n—1,nl,ona f(t)=n-1+ /

(n—1-1)2. Ainsi

f

n+0°=n et f(t) ——n-1+(-1*=n
X—n+ X—n—

courbe de f est constituée de bouts de paraboles qui sont recol-

Comme f(n) = n, on en déduit que f est continue en n. La /
1és de maniere continue.

Définition 5.3. Prolongement par continuité en un point

Soit A une partie de R, a € A et f: A\{a} — R admettant une limite ¢ € R en a. La fonction f
prolongée a A en posant f(a) := ¢ est appelée prolongement par continuité de f en a.

Bien qu'il s’agisse d'un abus de notation, la fonction prolongée gardera le plus souvent le méme nom.
Un exemple usuel est celui de la fonction sinus cardinal, définie par f(x) := % sur R* et prolongée
en 0 par sa limite en ce point qui vaut 1.
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Le critére séquentiel sur les limites s’adapte directement en un critére séquentiel de continuité ponc-
tuelle :

Proposition 5.4. Critere séquentiel pour la continuité ponctuelle

Soit Ac R et a € A. Une fonction f: A — R est continue en a si et seulement si

N
V(ay) €A™, an . —a = f(an)m’f(a)

Le sens direct de cette équivalence n’autre autre qu'un théoreme de composition des limites, et il
est trés couramment utilisé. Nous 'avons appliqué pour faire le lien entre les limites potentielles
d’une suite récurrente définie par la relation u,+; = f(u,) (ou f est continue) et les points fixes de
f. Donnons-en une autre illustration remarquable et pas tout a fait inconnue du lecteur. Considé-
rons deux fonctions continues f : R — R et g: R — R qui coincident sur (). Comme tout réel est
limite d'une suite de nombres rationnels () est dense dans IR, cf. le chapitre AN1), on déduit de la
continuité de f et g que ces deux fonctions coincident sur R. C’est ce principe de prolongement des
identités par densité qui nous a a permis de résoudre 1'équation fonctionnelle de Cauchy au moyen
d’une analyse-synthese (cf. le chapitre ALG1) :

V(x,y)EIRZ, fx+y)=f(x)+ f(y) ouf:R— Restcontinue

Nous avons en effet établi qu'une solution f coincide avec g : x — xf(1) sur Q, fonction continue car
affine.

1.2. Propriétés locales d'une fonction continue et opérations

Le fonction f: A— R continue en un point a de A vérifie quelques propriétés locales au point a :

Propriétés locales d’'une fonction continue
= f estbornée au voisinage de a;
= Sim < f(a) <M, alors m < f(x) <M au voisinage de a;

= En particulier, si f(a) # 0, alors f est du signe de f(a) au voisinage de a.

Comme f(x) — f(a), ces résultats sont des applications directes de théoremes énoncés plus géné-
ralement pour des limites et démontrés au chapitre AN 3.

Des opérations sur les limites découlent immédiatement les propriétés suivantes.

Proposition 5.5. Opérations

SoitAcR,BcR,aeA,AeR,u:A—-R,v:A— Retw:B— Rtelles que u(A) cB.

a. Si u et v sont continues en a, alors © + Av et uv sont continues en a, et, si v(a) # 0, alors % et %
sont définies au voisinage de a et continues en ce point.

b. Si u est continue en a et w est continue en u(a), alors w o u est continue en a.

LLG ¥ HX6 6
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1.3. Extension aux fonctions a valeurs complexes

On étend la notion de limite aux fonctions a valeurs complexes en reprenant mot pour mot la défini-
tion et en considérant le module a place de la valeur absolue.
Proposition 5.6. Continuité ponctuelle, continuité globale

Soit A une partie de R. Soit # € A. Une fonction f : A — C est continue en fy si et seulement si Re(f)
et Im(f) sont continues en £.

Les résultats sur les opérations s’étendent sans peine a ce cadre.

2. Propriétés globales des fonctions continues sur un intervalle
On commence par donner une définition globale de la continuité.

Définition 5.7. Continuité globale (75.2)

Soit A c R. Une fonction f : A — R est dite continue sur A si elle est continue en tout point de A.

Les théoremes concernant les opérations sur les fonctions continues en un point s’étendent directe-
ment aux fonctions globalement continues.

Les fonctions continues sur une partie A de R qui est un intervalle vérifient des propriétés remar-
quables.

2.1. Image continue d’un intervalle

Le lecteur connait déja un énoncé du théoréme des valeurs intermédiaires : si une fonction continue f
prend deux valeurs y; et y» sur un intervalle I, alors elle prend aussi sur I toutes les valeurs comprises
entre y; et y». De fagon plus formelle, pour une fonction f : I — R continue ou I est un intervalle de
R:

Y(y1,¥2) € FD?, 11,321 < D

Cette propriété est la définition d’'une partie convexe de R. Comme une partie de R est un intervalle
si et seulement si elle est convexe (cf. le chapitre AN1), on en déduit une formulation équivalente su
théoreme des valeurs intermédiaires :

Théoréme 5.8. Théoréme des valeurs intermédiaires (/5.3 )

Si f:1— R est une fonction continue définie sur un intervalle I de R, alors f(I) est un intervalle.

La démonstration de cette proposition peut étre réduite a l'une de ses
applications les plus classiques : & s’annule

Lemme 5.9. ‘

Soit a < b deux réels et 6 : [a, b] — R continue tels que 6(a)6(b) < N

0. Il existe c € [a, b] tel que 5(c) = 0. r\/ -

LLG ¥ HX6 7
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o . La figure ci-contre illustre la nécessité de '’hypothése de continuité
dans le théoreme des valeurs intermédiaires.

Limage d’'un intervalle par une fonction non continue n’est pas
toujours un intervalle (ici la fonction est continue partout sauf en
un point) :

fo) =

Voici une illustration classique du théoreme des valeurs intermédiaires.

Soit a < b deuxréels et f : [a, b] — [a, b] une fonction continue.
On conjecture que f admet au moins un point fixe sur [a, b] (cf.
ci-contre). Cette propriété peut se reformuler ainsi : la fonction
0 :x— f(x)—x s’annule sur [a, b]. Cette fonction est continue
en tant que différence de deux fonctions continues. De plus,
d(a) = f(a)—a >0 car f(a) € [a,b] et 5(b) = f(b)—b <0 car
f(b) € [a, b]. On déduit du théoreme des valeurs intermédiaires
(ou du lemme) I'existence d'un point c de [a, b] tel que 5(c) =0,

ie. f(c)=c.

f aun point fixe

—

Limage f(I) est un intervalle mais de nature en général différente de I :

NN

I )= I )= J )=

Comme on peut en avoir I'intuition géométrique, I'image
continue d'un segment est un segment (cf. ci-contre).

y=f(x) Autrement dit, une fonction continue sur un segment est
bornée et atteint ses bornes supérieure et inférieure (i.e.
admet un maximum et un minimum). Pour la fonction
dont le graphe est esquissé ci-contre :

< ) =

Onam = min f(f) et m = max f(?).
tela,b] tela,bl

‘

Théoréme 5.10. Image continue d’'un segment, Weierstrass

Pour a < b deuxréels et [ : [a, b] — R continue, il existe (m,M) € R?, tel que f([a, b]) = [m,M].

LLG ¥ HX6
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Les hypothéses de continuité et sur le type d’inter- $
valle sont minimales comme l'illustrent les exemples
ci-contre :

fe )y =11 et g{ ) =

La fonction f admet une unique discontinuité surle ¢ - H
segment [0, 1] et g est continue sur I'intervalle semi- | L‘

ouvert [0, 1[. Nous étudierons plus loin dans ce cha-
pitre comment construire des fonctions telles que g,
qui présentent une infinité d’oscillations sur un in-
tervalle borné tel que [0, 1[. \

y=fx)
\

En guise d’application de ce théoreme de Weierstrass, démontrons que f : x — jgi’f

mum ' sur ]0, 1]. La fonction f est continue sur ]0, 1] mais cet intervalle n’est pas un segment, nous
ne pouvons donc appliquer directement le théoreme. Comme f(x) 0, f est prolongeable par

admet un mini-

x—0+
continuité en 0 et nous pouvons appliquer le théoreme a ce prolongement: f admet un minimum sur

[0,1]. Il reste a justifier que ce minimum n’est pas atteint en 0. Ceci est clair car f(0) =0et f (%) <0.
2.2. Bijections continues

Le lecteur est renvoyé au paragraphe dédié aux bijections du cours AN 3, dont la relecture est recom-
mandée avant d’aborder ce qui suit.

Proposition 5.11. Continuité et bijectivité, corollaire du TVI

Soit a et b des réels tels que a < b, et f : [a,b] — R une fonction continue. Si f est strictement
croissante sur [a, b], alors f réalise une bijection de [a, b] sur I'intervalle [ f(a), f(b)].

La figure ci-contre illustre le théoreme : l'injectivité est assu- t
rée par la stricte monotonie et la surjectivité par le théoreme
des valeurs intermédiaires. On adapte ce résultat aux autres
types d’intervalle. Par exemple, si f : [a, b[— R est continue et
strictement croissante, alors f réalise une bijection de [a, b[ sur y=f(x)
[f (@), €[ ou .

¢:= lim f(x)eR

x—b-

de bijection réciproque f~!: [f(a),[— [a, b strictement crois- «‘7 —
sante sur [ f(a), ¢].

Lors d'une démonstration, un tableau de variation permet de présenter efficacement les informations
utiles a I’application de ce corollaire (monotonie, limites, etc).

1. On pourrait aussi essayer d’étudier les variations de f sur [0, 1] mais cette voie nécessiterait de nombreux calculs.
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Considérons la fonction cotan définie sur ]0,n[. Elle y est déri-
vable et cotan’ = —1 —sin? < 0 donc cotan est strictement dé-
croissante sur cet intervalle. On a

cosu 1 cosu 1

- ~ — et cotan(m—u) = -
sinu u—0 u —sinu u—0 u

~ ——

cotanu =

+00 et cotan x —o00. On en déduit les

u—0+ X—T—
variations de la fonction sur ]0, 7t[ :

d’ot1 cotan u

S

X 0 3 n

cotanx +oo 00— _

Ainsi, par le corollaire du théoréme des valeurs intermédiaires,
cotan réalise une bijection de ]0, n[ sur R.

Une fonction f :I — R injective sur un intervalle I de R n’est pas nécessai- \
rement strictement monotone comme l'illustre la figure de gauche, mais
cette conclusion est valable si I’on suppose la fonction f continue (cf. le
théoreme 2.2 ala page 10). -

) f, - La continuité d'une bijection f : A — B n'implique

pas toujours celle de f~! (cf. ci-contre a gauche, f

) - f—l est définie et continue sur [0, u[U[v, w], f‘1 est dis-

continue en a). Comme les graphes de f et f~! sont

/ symétriques par rapport a la premiere bissectrice (cf.

0 AN 3), on conjecture que dans le cas ou A est un in-
. tervalle, la continuité de f implique celle de f~!.

Proposition 5.12. Continuité d’'une bijection réciproque sur un intervalle
Soit I, J deux vrais intervalles de R et f : I —J une bijection continue.
a. La fonction f est strictement monotone;

b. La fonction f7!:J — 1, i.e. la bijection réciproque de f, est continue.

3. Petite galerie de tératologie

Les seuls graphes tracables a la main par un étre humain sont tres particuliers et ne refletent en rien
ce que peut étre une fonction continue : nous sommes limités a produire des bouts de graphe de
fonctions de classe 6> monotones séparés par d’ éventuels accidents en nombre fini (dicontinuité,
non dérivabilité, etc). Une fonction continue peut s’avérer extrémement irréguliere et il est dangereux
de raisonner a partir d'une figure. Citons quelques « monstres », il existe des fonctions continues :

LLG € HX6 10
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=> monotones sur aucun voisinage de 0;
= minimales en 0 mais croissantes sur aucun voisinage a droite de 0;

= continues et monotones sur aucun vrai intervalle.

Ce dernier type de « monstre » fournit bien-stir un exemple de fonction continue et monotone sur
aucun voisinage de 0, mais il existe des voies plus élémentaires pour construire une telle fonction.

Des figures et des démonstrations

Nous encourageons le lecteur a dessiner le plus possible mais a passer au feu de la rigueur et la
démonstration ses intuitions géométriques.

3.1. Construction d’'une infinité d’oscillations sur un segment

Sur un intervalle non borné, le sinus oscille une infinité de fois. Afin de construire une fonction conti-

nue oscillant une infinité de fois sur [0, 1], on va déplacer I'infinité d’oscillations du sinus de +oo au
voisinage de 0 au moyen du changement de variable u := % :
f:R*—R
1

X — sin—
X

Cette fonction oscille bien une infinité de fois au voisinage de 0 mais n’est pas prolongeable par conti-
nuité en ce point.

Une facon d’y remédier tout en conser-
vant les oscillations est de «lisser » cette ﬂ :
fonction au moyen d'une amplitude qui “‘ \

tend versOen0: ( \

g:R*"—R \

1
X — Xxsin— ‘
X

Comme Vx € R*, |g(x)| < |x|,ona

g(x) SO \‘ |

par le théoreme d’encadrement et g est
bien prolongeable par continuité en 0.

/

Ici une infinité d’oscillations

\
\

RN

Les fonctions f et g sont pas représentables géométriquement car il estimpossible de dessiner une in-
finité d’oscillations sur [0, 1]. On ne peut que les suggérer, les bandes vertes ci-dessus sont en quelques
sorte une version géométrique du etc. de la langue latine.

La fonction g est continue sur R et monotone sur aucun voisinage de 0. Soit V un voisinage de 0. Pour
neN*, posons

. nm
X, := — desorte que g(x,) = x,sin—
nmn
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Comme x;, 0, il existe un rang ny a partir duquel x, € V. Comme (x,),>5, est décroissante et

n—oo
(g(xn)) —— n’est pas monotone, la fonction g ne peut étre monotone sur V.

Afin d’obtenir une fonction continue minimale en 0
mais non croissante sur tout voisinage a droite de 0, il
suffit de « redresser » g au moyen de la valeur absolue : N
la fonction & :=|g| convient. ‘\ /\

La démonstration utilise la méme suite (x,),>n, que “\\ f \\ /' \\ \{ ‘

précédemment en remarquant que (h(x,)),- n, V€St \/ \\/ ‘/ Il ‘MHHH , WM | }\/ \/ \/
=z \f | \

pas monotone (car h(xz;,) =0 et h(x2,+1) > 0 pour tout . I \ o LA

nelN*).

On pourra aborder le test (£5.4).
3.2. Une fonction continue et monotone sur aucun vrai intervalle

En 1930, Bartel Leendert van der Waerden construisit une fonction continue nulle part monotone
et nulle part dérivable, pres d'un siecle apres le premier exemple de Bolzano. Son idée était de su-
perposer une infinité d’oscillations a des pulsations différentes de facon a obtenir une fonction tres
irréguliére. En jouant comme précédemment sur les amplitudes de ces oscillations, on peut « contro-
ler » la continuité et la dérivabilitéde la fonction ainsi définie. Une premiére difficulté est de formaliser
cette « superposition infinie ».

Le point de départ est la création d'une fonction en dent de scie :

x  sixe[0,3]

¢ est 1-périodique et Vx € [0,1[, d(x) = ] A
1-xsixe[31]

On prouve sans peine que ¢ est 1-lipschitzienne donc continue sur R.

ANANANANANAANANANANAN

Pour tout i € N et x € R, on pose ¢;(x) :=

2i +00 n
MetS(x) = ) di(x) == lim ) ;).
2i = n—00 ;=

Cette fonction? est bien définie car, a x fixé dans R, la suite de terme général

n
Su(x) = Z b;i(x)(cf. les graphes de S; pour i € [0,5] ci-dessous)
i=0

est croissante (les fonctions ¢; sont positives) et majorée car

i(p(zix) vl 1

<Y =—=2-—x2

|Sn(X)| S Fr 202! 2"

¢(10%)
101

2. Van der Waerden a en fait sommé les fonctions , la version ici exposée simplifie quelque peu la démonstration d’origine.
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$bo $1 ¢z ¢bs3 G2
. U AVAVAVANE VWV VYN
1 S 1 1 Sz S3 ‘ S4 SS

Nous allons démontrer que S est continue. Dans la mesure o1 S est une somme infinie de fonctions
continues, le théoreme sur les sommes de fonctions continues ne s’applique pas. Il n’est pas difficile
de voir que S est 1-périodique, il suffit donc de démontrer la continuité de S sur [0, 1]. Soit x et y dans

[0,1] et distincts. Il existe ip € IN tel que Zloﬂ <|lx-yl< 2%0 Pour i € [0, iy], on a

[0(2'x) - 0(27y)| < 271x -1 < /212y

car 0 < 2/ |x — y| <2|x - y| < 1. Ainsi

+o0 |(27x) — p(2'y) Vik-yl @ VIx-y
S-S <Y y ) Z 5 t L S SCVIR-y
i=0 i=ip+1

1 _ +2.0n déduit du théoréme d’encadrement que S(x) — S(y). Ainsi S est continue?®.
- -y

T
Il reste a vérifier que f n’est monotone sur aucun intervalle. Soit I un intervalle ouvert de [0, 1]. Comme
'ensemble { & ; ke IN et 0 < L <2} est dense dans [0, 1], il existe k € N et 0 < L < 2¥ tel que 3 € 1.

avec C:=

267
Pour j € N tel que j > k, posons a; := 213 21‘ eta].—§+§ PourielN,ona*
0 sii>j
bila;) = 2% sij>i>k etdeméme pour b;
Gi(5r) x5 sik>i

Ainsi,
1 j-k L. j-2k
= = — 4L s =
fla;) = Z(b(a]) Z(bz Zk ;2 Y /f(Zk)+ 2]
ﬁ,_/
=)

de méme pour b;. Lintervalle I étant ouvert, on peut choisir j € IN tel que j > 2k et (aj, b;) € I2.0na
alors f(aj) > f(z%c) et f(bj) > f(sz) et on en conclut que la fonction f pas monotone sur .

On peut également établir que cette fonction n’est nulle part dérivable sur R mais c’est une autre
histoire. ..

3. Enfait, on peut démontrer que f est une fonction a-holdérienne pour tout « €]0,1[, i.e.
Vaelo,1[, 3Cq e R}, V(x,3) €[0,11%, 1S(x) =S(1)| < Calx—yI*
Comme le caractere lipschitzien, cette propriété s'interpréte géométriquement en comparant les graphes de f et des fonctions x — C|x — a|®.

. L. L . . A . 1 1 — | L
4. Lorsque k > i, on vérifie que les nombres aj, bj et ok appartiennent tous les trois au méme intervalle [n, n+ j] ou ]n +3,n+ 1[, avec n:= [z—kJ
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4, Tests

5.1.®D

Ecrire sous forme quantifiée la proposition « f n’est pas continue en a».

52.®D
Soit f, g: Ac R continues. Montrer que max(f, g) et min(f, g) sont continues sur A.

53.®D
Soit f : S — R continue ou S est un segment tel que S < f(S). Montrer qu'il existe ) € S tel que

[ (1) = to.

54.®9

o1s 1 .
En utilisant x — sin ¢, proposer une formule pour la fonction g de la figure de la page 9
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5. Solutions des tests

5.1.e8 O
La continuité de f en a s’écrit Ve > 0, Ja > 0,
Vxe Znla-a,a+al, [f(x)- f(a)| <e suffi
de prendre la négation : 3¢ > 0, Va > 0, Ix €
Znla-ao,a+al,|f(x)-fla)]>e.

5.2.88 9O
11 suffit d’utiliser les formules
+o+|f—
max(f,g) = L8 28
. +g-1f-gl
mln(f,g) — %

et d’appliquer les théoremes sur les opérations
entre fonctions continues.

LLG ¥ HX6

53.88 O

Posons I = [a, b] et notons g 'application g(¢) =
f () —t.Del'inclusion I c f(I), on déduit I'exis-
tence de c et d appartenant a [a, b] tels que
f(c)=aet f(d) =b.Nousavons g(c) = f(c)—c=
a-c<0etg(d)=f(d)—d=b—-d=>0.Dapres
le théoreme des valeurs intermédiaires, il existe
to € [c,d] tel que g(ty) = 0, c’est-a-dire f(ty) = tp.

54.88 O

Lexpression g(x) := —sin

. 1-x
convient.

T2 pour x € [0,1]
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