
Ù AN 5 Fonctions continues

Le cours d’analyse se poursuit par l’étude des fonctions continues. Lorsqu’elles sont
définies sur un intervalle de R, ces dernières jouissent de propriétés globales re-
marquables.

Le parlement de Londres, Claude Monet
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L A notion même de continuité, qui est une évolution de celle de limite, est elle aussi appa-
rue de manière tardive, vers le début du XIXe siècle. Pour Euler par exemple, le sens du mot
« continu » n’était pas le même que celui qu’il recouvre de nos jours, et qui va faire l’objet du

présent chapitre. En effet, pour Euler, une fonction continue était une fonction définie par une seule
expression « analytique ».

Leonhard Euler (1707-1783)

Ainsi, la fonction définie sur R par f (x) = x si x ⩽ 0 et f (x) = 2x
si x > 0 n’était pas une fonction continue pour Euler, puisqu’elle
nécessite pour la définir deux expressions analytiques, alors qu’elle
le sera pour nous.

Au sens moderne et actuel, une fonction continue sur un inter-
valle est une fonction dont le graphe n’est pas « déchiré » en plu-
sieurs morceaux; alors que pour Euler, c’était l’expression de défi-
nition qui ne devait pas être constituée de plusieurs morceaux dis-
tincts. Les mathématiciens considéraient implicitement que toutes
les fonctions « définies par une seule formule » qu’ils étudiaient
étaient « continues », ou à tout le moins ils ne se posaient pas com-
plètement la question de la continuité au sens où nous la connais-
sons aujourd’hui.

C’est à Cauchy, Bolzano et Weierstrass que l’on doit la rigueur des définitions et des preuves en ce
domaine, permettant ainsi d’asseoir l’analyse sur des bases solides et cohérentes.

Voici comment Cauchy présente la continuité des fonctions dans son Analyse algébrique de 1821 :

« Soit f (x) une fonction de la variable x, et supposons que, pour
chaque valeur de x intermédiaire entre deux limites données,
cette fonction admette constamment une valeur unique et fi-
nie. Si, en partant d’une valeur de x comprise entre ces limites,
on attribue à la variable x un accroissement infiniment petit α,
la fonction elle-même recevra pour accroissement la différence
f (x +α)− f (x), qui dépendra en même temps de la nouvelle va-
riable α et de la valeur de x. Cela posé, la fonction f (x) sera, entre
les deux limites assignées à la variable x, fonction continue de
cette variable, si, pour chaque valeur de x intermédiaire entre ces
limites, la valeur numérique de la différence f (x+α)− f (x) décroît
indéfiniment avec celle de α. » Cauchy (1789-1857)

On mesure la difficulté de donner un sens précis à ce type de définition. De plus, la distinction entre
ce que nous allons appeler la continuité et la continuité uniforme n’apparaît pas clairement dans ce
texte de Cauchy.

Bolzano (1781-1848)

De même, la notion de dérivabilité n’était pas encore à cette époque com-
plètement dissociée de celle de continuité.

L’un des théorèmes remarquables sur les fonctions continues est celui
des valeurs intermédiaires. Stevin l’utilisa, sans le prouver, pour appro-
cher les racines d’un polynôme. La preuve complète et rigoureuse de ce
résultat revient à Bolzano, qui rejetait les démonstrations fondées sur la
« géométrie » et la « mécanique », parce qu’il les jugeait insuffisantes (de
même que celles qui montraient ainsi la possibilité de décomposer tout
polynôme à coefficients réels en produit de termes du premier ou du se-
cond degré à coefficients réels).
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C’est finalement à Weierstrass que l’on doit la définition formelle des no-
tions de limite et de continuité, en termes de ε et de α, que nous utilisons
aujourd’hui :

Wir nennen dabei eine Grösse y eine stetige Function von x, wenn man
nach Annahme einer Grösse ϵ die Existenz von δ beweisen kann, sodass
zu jedem Wert zwischen x0 −δ . . . x0 +δ des Zugehörige Wert von y zwi-
schen y0 −ϵ . . . y0 +ϵ liegt.

Ci-contre, le mathématicien berlinois Karl Wilheim Weierstrass (1815-
1897). Partant d’une preuve incomplète de Bolzano, il prouva que l’image
d’un segment par une fonction continue est un segment.

1. Continuité ponctuelle et propriétés locales des fonctions continues

D’un pont de vue heuristique, une fonction continue sur un intervalle est une fonction dont le graphe
est « d’un seul tenant ».

x0

f1

x0

f2
f3 f4

Les fonctions f1 et f2 présentent une discontinuité en x0. La fonction f3 est continue en tout point. La
fonction f4 est continue en tout point sauf 0.

1.1. Continuité en un point

Une fonction est continue en un point de son ensemble de définition si elle admet une limite en ce
point, ce qui se reformule de la façon suivante :

Définition 5.0. Continuité ponctuelle, continuités latérales
(
E5.1

)
Soit A une partie deR, f : A →R et a ∈ A.

On dit que f est continue au point a si f (x) −−−→
x→a

f (a).

Si a est adhérent à A∩ ]−∞, a[, on dit que f est continue à gauche au point a si f (x) −−−−→
x→a− f (a).

Si a est adhérent à A∩ ]a,+∞[, on dit que f est continue à droite au point a si f (x) −−−−→
x→a+ f (a).

Ainsi, f est continue au point a si et seulement si

∀ε> 0, ∃α> 0, ∀x ∈ A , |x −a| < α =⇒ ∣∣ f (x)− f (a)
∣∣< ε
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La continuité en un point est une propriété locale

Soit f : A →R, a ∈ A et V ∈Va ; f est continue en a ∈ A si et seulement si f |V est continue en a.

Pour a ∈R\Z, notons n := ⌊a⌋. Comme n < a < n+1, l’intervalle ]n,n+1[ est
un voisinage de a sur lequel la fonction partie entière est constante égale à
n, cette fonction est donc continue au point a.

En revanche, en un point a deZ, la fonction partie entière n’admet aucune
limite en a (car elle admet des limites à gauche et à droite distinctes en ce
point), elle n’est donc pas continue en a.

Pour établir la continuité de la fonction valeur absolue en a ∈R, il suffit d’appliquer une variante de
l’inégalité triangulaire

∀x ∈R ,
∣∣|x|− |a| ∣∣⩽ |x −a|

dont on déduit que la définition de la continuité en a est vérifiée (pour tout ε > 0, le réel α := ε

convient). Cette démonstration s’adapte facilement à des fonctions vérifiant une inégalité un peu
plus générale que ci-dessus.

Définition 5.1. Fonctions lipschitziennes

Soit k ∈R∗+. Une fonction f : A →R est dite k-lipschitzienne si

∀(x, y) ∈ A2 ,
∣∣ f (x)− f (y)

∣∣ ⩽ k |x − y |
On dit aussi que f est lipschitzienne de rapport k. Une fonction f est dite lipschitzienne s’il existe
un réel k strictement positif tel que f soit k-lipschitzienne.

En termes plus géométriques, une fonction est k-lipschitzienne si et seulement si toutes les cordes de
son graphe ont une pente inférieure ou égale à k en valeurs absolue.

x

y

Corde de pente
f (y)− f (x)

y −x

y = f (a)+k(x −a)

y = f (a)−k(x −a)
a

f (a)

L’inégalité
∣∣ f (x)− f (a)

∣∣ ⩽ k |x −a| équivaut à −k |x −a|⩽ f (x)− f (a)⩽ k |x −a|, i.e.

∀x ⩾ a , f (a)−k (x −a) ⩽ f (x) ⩽ k (x −a) et ∀x ⩽ a , f (a)+k (x −a) ⩽ f (x) ⩽ f (a)−k (x −a)

L’interprétation géométrique de ces deux inégalités (la variable a étant fixée) est donc claire : le graphe
de f est contenu dans un cône de dimension deux, ou de façon plus imagée, un entonnoir.
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Pour une fonction k-lipschiztienne, la définition de la continuité en a ∈ A est vérifiée pour α := ε
k ·

Toute fonction lipschitzienne est donc continue, mais la
réciproque est fausse. Pour trouver un contre-exemple,
il suffit de trouver une fonction continue possédant des
cordes de pente arbitrairement grande. La racine carrée sur
[0,1] convient, tout comme x 7→ x2 surR+ :

p
x −p

0

x −0
= 1p

x
−−−−→
x→0+ +∞ et

x2 −02

x −0
= x −−−−−→

x→+∞ +∞

Grandes
pentes

Proposition 5.2. Continuité vs. continuités latérales

Soit f : A →R et a un point intérieur de A. Une fonction est continue en a si et seulement si elle est
continue à gauche et à droite au point a.

Considérons par exemple la fonction définie surR par f (t ) := ⌊t⌋+ (t −⌊t⌋)2.

La fonction f est continue en a ∈R\Z car sur le voisinage ]n,n+
1[ de a (où n := ⌊a⌋), f est polynomiale. Soit n ∈Z. Pour t ∈ [n,n+
1[, on a f (t ) = n + (t −n)2 et pour t ∈ [n −1,n[, on a f (t ) = n −1+
(n −1− t )2. Ainsi

f (t ) −−−−→
x→n+ n +02 = n et f (t ) −−−−→

x→n− n −1+ (−1)2 = n

Comme f (n) = n, on en déduit que f est continue en n. La
courbe de f est constituée de bouts de paraboles qui sont recol-
lés de manière continue.

Définition 5.3. Prolongement par continuité en un point

Soit A une partie de R, a ∈ A et f : A \ {a} → R admettant une limite ℓ ∈ R en a. La fonction f
prolongée à A en posant f (a) := ℓ est appelée prolongement par continuité de f en a.

Bien qu’il s’agisse d’un abus de notation, la fonction prolongée gardera le plus souvent le même nom.
Un exemple usuel est celui de la fonction sinus cardinal, définie par f (x) := sin x

x sur R∗ et prolongée
en 0 par sa limite en ce point qui vaut 1.

LLG . HX 6 5
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Le critère séquentiel sur les limites s’adapte directement en un critère séquentiel de continuité ponc-
tuelle :

Proposition 5.4. Critère séquentiel pour la continuité ponctuelle

Soit A ⊂R et a ∈ A. Une fonction f : A →R est continue en a si et seulement si

∀(an) ∈ AN , an −−−−−→
n→+∞ a =⇒ f (an) −−−−−→

n→+∞ f (a)

Le sens direct de cette équivalence n’autre autre qu’un théorème de composition des limites, et il
est très couramment utilisé. Nous l’avons appliqué pour faire le lien entre les limites potentielles
d’une suite récurrente définie par la relation un+1 = f (un) (où f est continue) et les points fixes de
f . Donnons-en une autre illustration remarquable et pas tout à fait inconnue du lecteur. Considé-
rons deux fonctions continues f : R → R et g : R→ R qui coïncident sur Q. Comme tout réel est
limite d’une suite de nombres rationnels (Q est dense dans R, cf. le chapitre AN1), on déduit de la
continuité de f et g que ces deux fonctions coïncident surR. C’est ce principe de prolongement des
identités par densité qui nous a a permis de résoudre l’équation fonctionnelle de Cauchy au moyen
d’une analyse-synthèse (cf. le chapitre ALG1) :

∀(x, y) ∈R2 , f (x + y) = f (x)+ f (y) où f :R→R est continue

Nous avons en effet établi qu’une solution f coïncide avec g : x 7→ x f (1) surQ, fonction continue car
affine.

1.2. Propriétés locales d’une fonction continue et opérations

Le fonction f : A →R continue en un point a de A vérifie quelques propriétés locales au point a :

Propriétés locales d’une fonction continue

f est bornée au voisinage de a ;

Si m < f (a) < M, alors m < f (x) < M au voisinage de a ;

En particulier, si f (a) ̸= 0, alors f est du signe de f (a) au voisinage de a.

Comme f (x) −−−→
x→a

f (a), ces résultats sont des applications directes de théorèmes énoncés plus géné-

ralement pour des limites et démontrés au chapitre AN 3.

Des opérations sur les limites découlent immédiatement les propriétés suivantes.

Proposition 5.5. Opérations

Soit A ⊂R, B ⊂R, a ∈ A, λ ∈R, u : A →R, v : A →R et w : B →R telles que u(A) ⊂ B.

a. Si u et v sont continues en a, alors u +λv et uv sont continues en a, et, si v(a) ̸= 0, alors 1
v et u

v
sont définies au voisinage de a et continues en ce point.

b. Si u est continue en a et w est continue en u(a), alors w ◦u est continue en a.

LLG . HX 6 6
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1.3. Extension aux fonctions à valeurs complexes

On étend la notion de limite aux fonctions à valeurs complexes en reprenant mot pour mot la défini-
tion et en considérant le module à place de la valeur absolue.

Proposition 5.6. Continuité ponctuelle, continuité globale

Soit A une partie deR. Soit t0 ∈ A. Une fonction f : A →C est continue en t0 si et seulement si Re( f )
et Im( f ) sont continues en t0.

Les résultats sur les opérations s’étendent sans peine à ce cadre.

2. Propriétés globales des fonctions continues sur un intervalle

On commence par donner une définition globale de la continuité.

Définition 5.7. Continuité globale
(
E5.2

)
Soit A ⊂R. Une fonction f : A →R est dite continue sur A si elle est continue en tout point de A.

Les théorèmes concernant les opérations sur les fonctions continues en un point s’étendent directe-
ment aux fonctions globalement continues.

Les fonctions continues sur une partie A de R qui est un intervalle vérifient des propriétés remar-
quables.

2.1. Image continue d’un intervalle

Le lecteur connaît déjà un énoncé du théorème des valeurs intermédiaires : si une fonction continue f
prend deux valeurs y1 et y2 sur un intervalle I, alors elle prend aussi sur I toutes les valeurs comprises
entre y1 et y2. De façon plus formelle, pour une fonction f : I →R continue où I est un intervalle de
R :

∀(y1, y2) ∈ f 〈I〉2 , [y1, y2] ⊂ f 〈I〉
Cette propriété est la définition d’une partie convexe deR. Comme une partie deR est un intervalle
si et seulement si elle est convexe (cf. le chapitre AN1), on en déduit une formulation équivalente su
théorème des valeurs intermédiaires :

Théorème 5.8. Théorème des valeurs intermédiaires
(
E5.3

)
Si f : I →R est une fonction continue définie sur un intervalle I deR, alors f 〈I〉 est un intervalle.

La démonstration de cette proposition peut être réduite à l’une de ses
applications les plus classiques :

Lemme 5.9.

Soit a < b deux réels et δ : [a,b] →R continue tels que δ(a)δ(b) ⩽
0. Il existe c ∈ [a,b] tel que δ(c) = 0.

a

b

δ s’annule

LLG . HX 6 7
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1

1

1
2

1
2

La figure ci-contre illustre la nécessité de l’hypothèse de continuité
dans le théorème des valeurs intermédiaires.

L’image d’un intervalle par une fonction non continue n’est pas
toujours un intervalle (ici la fonction est continue partout sauf en
un point) :

f
〈

[0,1]
〉 = [

0,
1

2

]∪ {1}

Voici une illustration classique du théorème des valeurs intermédiaires.

Soit a < b deux réels et f : [a,b] → [a,b] une fonction continue.
On conjecture que f admet au moins un point fixe sur [a,b] (cf.
ci-contre). Cette propriété peut se reformuler ainsi : la fonction
δ : x 7→ f (x)− x s’annule sur [a,b]. Cette fonction est continue
en tant que différence de deux fonctions continues. De plus,
δ(a) = f (a)− a ⩾ 0 car f (a) ∈ [a,b] et δ(b) = f (b)−b ⩽ 0 car
f (b) ∈ [a,b]. On déduit du théorème des valeurs intermédiaires
(ou du lemme) l’existence d’un point c de [a,b] tel que δ(c) = 0,
i.e. f (c) = c. a b

a

b

f a un point fixe

L’image f 〈I〉 est un intervalle mais de nature en général différente de I :

f ( [a,b[ ) = [c,d ] f ( ]a,b[ ) = [c,d [ f ( ]a,b[ ) = [c,d ]

a

b

M

m

y = f (x)

Comme on peut en avoir l’intuition géométrique, l’image
continue d’un segment est un segment (cf. ci-contre).
Autrement dit, une fonction continue sur un segment est
bornée et atteint ses bornes supérieure et inférieure (i.e.
admet un maximum et un minimum). Pour la fonction
dont le graphe est esquissé ci-contre :

f 〈[a,b]〉 = [m,M]

On a m = min
t∈[a,b]

f (t ) et m = max
t∈[a,b]

f (t ).

Théorème 5.10. Image continue d’un segment, Weierstrass

Pour a ⩽ b deux réels et f : [a,b] →R continue, il existe (m,M) ∈R2, tel que f ([a,b]) = [m,M].

LLG . HX 6 8
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Les hypothèses de continuité et sur le type d’inter-
valle sont minimales comme l’illustrent les exemples
ci-contre :

f 〈[0,1]〉 = R et g 〈[0,1[〉 = R
La fonction f admet une unique discontinuité sur le
segment [0,1] et g est continue sur l’intervalle semi-
ouvert [0,1[. Nous étudierons plus loin dans ce cha-
pitre comment construire des fonctions telles que g ,
qui présentent une infinité d’oscillations sur un in-
tervalle borné tel que [0,1[.

1

0

y = f (x)

1

0

y = g (x)

En guise d’application de ce théorème de Weierstrass, démontrons que f : x 7→ x ln x
x2+1

admet un mini-

mum 1 sur ]0,1]. La fonction f est continue sur ]0,1] mais cet intervalle n’est pas un segment, nous
ne pouvons donc appliquer directement le théorème. Comme f (x) −−−−→

x→0+ 0, f est prolongeable par

continuité en 0 et nous pouvons appliquer le théorème à ce prolongement : f admet un minimum sur
[0,1]. Il reste à justifier que ce minimum n’est pas atteint en 0. Ceci est clair car f (0) = 0 et f

(1
2

)< 0.

2.2. Bijections continues

Le lecteur est renvoyé au paragraphe dédié aux bijections du cours AN 3, dont la relecture est recom-
mandée avant d’aborder ce qui suit.

Proposition 5.11. Continuité et bijectivité, corollaire du TVI

Soit a et b des réels tels que a < b, et f : [a,b] → R une fonction continue. Si f est strictement
croissante sur [a,b], alors f réalise une bijection de [a,b] sur l’intervalle [ f (a), f (b)].

La figure ci-contre illustre le théorème : l’injectivité est assu-
rée par la stricte monotonie et la surjectivité par le théorème
des valeurs intermédiaires. On adapte ce résultat aux autres
types d’intervalle. Par exemple, si f : [a,b[→R est continue et
strictement croissante, alors f réalise une bijection de [a,b[ sur
[ f (a),ℓ[ où

ℓ := lim
x→b−

f (x) ∈R

de bijection réciproque f −1 : [ f (a),ℓ[→ [a,b[ strictement crois-
sante sur [ f (a),ℓ[. a b

f (b)

f (a)

y = f (x)

Lors d’une démonstration, un tableau de variation permet de présenter efficacement les informations
utiles à l’application de ce corollaire (monotonie, limites, etc).

1. On pourrait aussi essayer d’étudier les variations de f sur [0,1[ mais cette voie nécessiterait de nombreux calculs.

LLG . HX 6 9
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π
2 π

0

Considérons la fonction cotan définie sur ]0,π[. Elle y est déri-
vable et cotan′ = −1− sin2 < 0 donc cotan est strictement dé-
croissante sur cet intervalle. On a

cotanu = cosu

sinu
∼

u→0

1

u
et cotan(π−u) = cosu

−sinu
∼

u→0
− 1

u

d’où cotanu −−−−→
u→0+ +∞ et cotan x −−−−→

x→π− −∞. On en déduit les

variations de la fonction sur ]0,π[ :

x

cotan x

0 π

+∞
−∞

π
2

0

Ainsi, par le corollaire du théorème des valeurs intermédiaires,
cotan réalise une bijection de ]0,π[ surR.

Une fonction f : I →R injective sur un intervalle I deR n’est pas nécessai-
rement strictement monotone comme l’illustre la figure de gauche, mais
cette conclusion est valable si l’on suppose la fonction f continue (cf. le
théorème 2.2 à la page 10).

0 u v

u

v

0 u v w

u

v

w

a

a

f

f −1 f

f −1

La continuité d’une bijection f : A → B n’implique
pas toujours celle de f −1 (cf. ci-contre à gauche, f
est définie et continue sur [0,u[∪[v, w], f −1 est dis-
continue en a). Comme les graphes de f et f −1 sont
symétriques par rapport à la première bissectrice (cf.
AN 3), on conjecture que dans le cas où A est un in-
tervalle, la continuité de f implique celle de f −1.

Proposition 5.12. Continuité d’une bijection réciproque sur un intervalle

Soit I, J deux vrais intervalles deR et f : I → J une bijection continue.

a. La fonction f est strictement monotone;

b. La fonction f −1 : J → I, i.e. la bijection réciproque de f , est continue.

3. Petite galerie de tératologie

Les seuls graphes traçables à la main par un être humain sont très particuliers et ne reflètent en rien
ce que peut être une fonction continue : nous sommes limités à produire des bouts de graphe de
fonctions de classe C 2 monotones séparés par d’éventuels accidents en nombre fini (dicontinuité,
non dérivabilité, etc). Une fonction continue peut s’avérer extrêmement irrégulière et il est dangereux
de raisonner à partir d’une figure. Citons quelques « monstres », il existe des fonctions continues :
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monotones sur aucun voisinage de 0 ;

minimales en 0 mais croissantes sur aucun voisinage à droite de 0 ;

continues et monotones sur aucun vrai intervalle.

Ce dernier type de « monstre » fournit bien-sûr un exemple de fonction continue et monotone sur
aucun voisinage de 0, mais il existe des voies plus élémentaires pour construire une telle fonction.

Des figures et des démonstrations

Nous encourageons le lecteur a dessiner le plus possible mais à passer au feu de la rigueur et la
démonstration ses intuitions géométriques.

3.1. Construction d’une infinité d’oscillations sur un segment

Sur un intervalle non borné, le sinus oscille une infinité de fois. Afin de construire une fonction conti-
nue oscillant une infinité de fois sur [0,1], on va déplacer l’infinité d’oscillations du sinus de +∞ au
voisinage de 0 au moyen du changement de variable u := 1

x :

f : R∗ −→ R

x 7−→ sin
1

x

Cette fonction oscille bien une infinité de fois au voisinage de 0 mais n’est pas prolongeable par conti-
nuité en ce point.

Une façon d’y remédier tout en conser-
vant les oscillations est de « lisser » cette
fonction au moyen d’une amplitude qui
tend vers 0 en 0 :

g : R∗ −→ R

x 7−→ x sin
1

x

Comme ∀x ∈R∗,
∣∣g (x)

∣∣ ⩽ |x|, on a

g (x) −−−→
x→0

0

par le théorème d’encadrement et g est
bien prolongeable par continuité en 0.

Ici une infinité d’oscillations

Les fonctions f et g sont pas représentables géométriquement car il est impossible de dessiner une in-
finité d’oscillations sur [0,1]. On ne peut que les suggérer, les bandes vertes ci-dessus sont en quelques
sorte une version géométrique du etc. de la langue latine.

La fonction g est continue surR et monotone sur aucun voisinage de 0. Soit V un voisinage de 0. Pour
n ∈N∗, posons

xn := 2

nπ
de sorte que g (xn) = xn sin

nπ

2

LLG . HX 6 11



2025-2026 Laurent Kaczmarek

Comme xn −−−−→
n→∞ 0, il existe un rang n0 à partir duquel xn ∈ V. Comme (xn)n⩾n0 est décroissante et(

g (xn)
)

n⩾n0
n’est pas monotone, la fonction g ne peut être monotone sur V.

Afin d’obtenir une fonction continue minimale en 0
mais non croissante sur tout voisinage à droite de 0, il
suffit de « redresser » g au moyen de la valeur absolue :
la fonction h := |g | convient.

La démonstration utilise la même suite (xn)n⩾n0 que
précédemment en remarquant que

(
h(xn)

)
n⩾n0

n’est
pas monotone (car h(x2n) = 0 et h(x2n+1) > 0 pour tout
n ∈N∗).

On pourra aborder le test
(
E5.4

)
.

3.2. Une fonction continue et monotone sur aucun vrai intervalle

En 1930, Bartel Leendert van der Waerden construisit une fonction continue nulle part monotone
et nulle part dérivable, près d’un siècle après le premier exemple de Bolzano. Son idée était de su-
perposer une infinité d’oscillations à des pulsations différentes de façon à obtenir une fonction très
irrégulière. En jouant comme précédemment sur les amplitudes de ces oscillations, on peut « contrô-
ler » la continuité et la dérivabilitéde la fonction ainsi définie. Une première difficulté est de formaliser
cette « superposition infinie ».

Le point de départ est la création d’une fonction en dent de scie :

φ est 1-périodique et ∀x ∈ [0,1[, φ(x) =
{

x si x ∈ [
0, 1

2

[
1−x si x ∈ [1

2 ,1
[

On prouve sans peine que φ est 1-lipschitzienne donc continue surR.

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6

Pour tout i ∈N et x ∈R, on pose φi (x) := φ
(
2i

)
2i

et S(x) :=
+∞∑
i=0

φi (x) := lim
n→∞

n∑
k=0

φi (x).

Cette fonction 2 est bien définie car, à x fixé dansR, la suite de terme général

Sn(x) :=
n∑

i=0
φi (x)(cf. les graphes de Si pour i ∈ �0,5� ci-dessous)

est croissante (les fonctions φi sont positives) et majorée car

∣∣Sn(x)
∣∣ ⩽ n∑

i=0

φ
(
2i x

)
2i

⩽
n∑

i=0

1

2i
= 2− 1

2n
⩽ 2

2. Van der Waerden a en fait sommé les fonctions
φ
(

10i
)

10i , la version ici exposée simplifie quelque peu la démonstration d’origine.
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φ0 φ1 φ2 φ3 φ4

S1 S2 S3 S4 S5

Nous allons démontrer que S est continue. Dans la mesure où S est une somme infinie de fonctions
continues, le théorème sur les sommes de fonctions continues ne s’applique pas. Il n’est pas difficile
de voir que S est 1-périodique, il suffit donc de démontrer la continuité de S sur [0,1]. Soit x et y dans
[0,1] et distincts. Il existe i0 ∈N tel que 1

2i0+1 < |x − y |⩽ 1
2i0

· Pour i ∈ �0, i0�, on a∣∣∣φ(
2i x

)−φ(
2i y

)∣∣∣ ⩽ 2i |x − y | ⩽
√

2i |x − y |

car 0 < 2i |x − y |⩽ 2i0 |x − y |⩽ 1. Ainsi

∣∣S(x)−S(y)
∣∣ ⩽ +∞∑

i=0

∣∣∣φ(
2i x

)−φ(
2i y

)∣∣∣
2i

⩽
i0∑

i=0

√|x − y |
p

2
i

+
+∞∑

i=i0+1

√|x − y |
2i−i0−1

⩽ C
√|x − y |

avec C := 1
1− 1p

2

+2. On déduit du théorème d’encadrement que S(x) −−−→
x→y

S(y). Ainsi S est continue 3.

Il reste à vérifier que f n’est monotone sur aucun intervalle. Soit I un intervalle ouvert de [0,1]. Comme
l’ensemble

{ L
2k ; k ∈N et 0 < L < 2k

}
est dense dans [0,1], il existe k ∈N et 0 < L < 2k tel que L

2k ∈ I.

Pour j ∈N tel que j > k, posons a j := L
2 j − 1

2 j et a j := L
2 j + 1

2 j · Pour i ∈N, on a 4

φi (a j ) =


0 si i ⩾ j
1

2 j si j > i ⩾ k

φi
( L

2k

)± 1
2 j si k > i

et de même pour b j

Ainsi,

f (a j ) =
j−1∑
i=0

φi (a j ) =
k−1∑
i=0

φi
( L

2k

)
︸ ︷︷ ︸

= f
(

L
2k

)
+

k−1∑
i=0

1

2i
+ j −k

2 j
⩾ f

( L

2k

)+ j −2k

2 j

de même pour b j . L’intervalle I étant ouvert, on peut choisir j ∈N tel que j > 2k et (a j ,b j ) ∈ I2. On a
alors f (a j ) > f

( L
2k

)
et f (b j ) > f

( L
2k

)
et on en conclut que la fonction f pas monotone sur I.

On peut également établir que cette fonction n’est nulle part dérivable sur R mais c’est une autre
histoire. . .

3. En fait, on peut démontrer que f est une fonction α-höldérienne pour tout α ∈ ]0,1[, i.e.

∀α ∈ ]0,1[ , ∃Cα ∈R∗+ , ∀(x, y) ∈ [0,1]2 , |S(x)−S(y)| ⩽ Cα |x − y |α

Comme le caractère lipschitzien, cette propriété s’interprète géométriquement en comparant les graphes de f et des fonctions x 7→ C|x −a|α.

4. Lorsque k > i , on vérifie que les nombres a j , b j et L
2k appartiennent tous les trois au même intervalle

[
n,n + 1

2

]
ou

]
n + 1

2 ,n +1
[
, avec n :=

⌊
L

2k

⌋
.
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4. Tests

5.1. 4 �

Écrire sous forme quantifiée la proposition « f n’est pas continue en a ».

5.2. 4 �

Soit f , g : A ⊂R continues. Montrer que max( f , g ) et min( f , g ) sont continues sur A.

5.3. 4 �

Soit f : S → R continue où S est un segment tel que S ⊂ f 〈S〉. Montrer qu’il existe t0 ∈ S tel que
f (t0) = t0.

5.4. 4 �

En utilisant x 7→ sin 1
x , proposer une formule pour la fonction g de la figure de la page 9
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5. Solutions des tests

5.1. ; �

La continuité de f en a s’écrit ∀ε > 0, ∃α > 0,
∀x ∈ D ∩ [a −α, a +α],

∣∣ f (x)− f (a)
∣∣ ⩽ ε. Il suffi

de prendre la négation : ∃ε > 0, ∀α > 0, ∃x ∈
D ∩ [a −α, a +α],

∣∣ f (x)− f (a)
∣∣> ε.

5.2. ; �

Il suffit d’utiliser les formules
max( f , g ) = f + g +| f − g |

2

min( f , g ) = f + g −| f − g |
2

et d’appliquer les théorèmes sur les opérations
entre fonctions continues.

5.3. ; �

Posons I = [a,b] et notons g l’application g (t ) =
f (t )− t . De l’inclusion I ⊂ f 〈I〉, on déduit l’exis-
tence de c et d appartenant à [a,b] tels que
f (c) = a et f (d) = b. Nous avons g (c) = f (c)−c =
a − c ⩽ 0 et g (d) = f (d)−d = b −d ⩾ 0. D’après
le théorème des valeurs intermédiaires, il existe
t0 ∈ [c,d ] tel que g (t0) = 0, c’est-à-dire f (t0) = t0.

5.4. ; �

L’expression g (x) := 1
1−x sin π

1−x pour x ∈ [0,1[
convient.
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