
Ù AN 6 Fonctions dérivables

Après l’étude des fonctions continues, nous allons nous intéresser aux fonctions
admettant un graphe lisse, i.e. admettant une tangente en chacun de ses points.
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L E calcul différentiel et intégral, dont seul l’aspect différentiel nous concerne dans ce chapitre,
est né des travaux indépendants de Gottfried Wilhelm Leibniz et Isaac Newton au XVIIe siècle.
La revendication de la paternité de cette nouvelle théorie fut l’objet de vives polémiques entre

les deux hommes et cette controverse affecta beaucoup Leibniz sur la fin de sa vie. Entre 1664 et 1671,
Newton travaille sur son ouvrage Methodus fluxionum et serierum infiniturum qui ne sera publié
qu’après sa mort en 1736 1. Il y introduit ce qu’il appelle le calcul des fluxions :

Isaac Newton (1642-1727)

« J’appellerai quantités fluentes, ou simplement fluentes, ces quanti-
tés que je considère comme augmentées graduellement et indéfini-
ment, je les représenterai par les dernières lettres de l’alphabet v, x, y
et z pour les distinguer des autres quantités qui, dans les équations,
sont considérées comme connues et déterminées, qu’on représente
par les lettres initiales a,b,c, etc., je représenterai par les mêmes der-
nières lettres surmontées d’un point v̇ , ẋ, . . . , ẏ et ż les vitesses dont
les fluentes sont augmentées par le mouvement qui les produit, et,
que par conséquent, on peut appeler fluxions... »

Ainsi pour Newton les quantités fluentes x, y sont des fonctions sou-
mises à des variations, à des changements, et les fluxions ẋ, . . . , ẏ de
ces fluentes mesurent leurs variations.

Il s’intéresse un peu plus loin dans l’ouvrage au problème inverse de la détermination des fluentes
x, y, etc. à partir de la connaissance des fluxions ẋ, ẏ , etc. C’est le problème réciproque du calcul
différentiel, à savoir le calcul intégral que nous avons mentionné ci-dessus et que nous aborderons
dans un chapitre ultérieur. Leibniz publie pour la première fois ses travaux sur le calcul différentiel
en 1684, dans les Acta eruditorum. Cependant, de nombreuses notes manuscrites produites sur les
dix années antérieures contiennent déjà ses idées sur la question. Le point de départ de Leibniz sur
ce sujet est plutôt celui des séries de nombres, pour lesquelles il calcule les différences des termes
successifs qu’il va sommer. Cette idée présente dans son De arte combinatoria de 1666 repose sur sa
vision philosophique du monde qui consiste à vouloir relier le tout et la partie 2. Par exemple la série
de nombres 1,5,9,15,22,30 donne lieu aux différences de termes successifs 4,4,6,7,8 dont la somme
4+4+6+7+8 = 29 est évidemment la différence entre le dernier et le premier terme de la série initiale,
à savoir 30−1. À partir de cette idée qu’il étendit aux séries infinies de nombres, puis au « cas d’une
variable continue », il obtint son calcul différentiel et intégral.

La relation 4+4+6+7+8 = 30−1 n’est autre qu’une version discrète et
finie du théorème fondamental du calcul intégral. Ce théorème relie
dérivées et intégrales, c’est-à-dire différences infinitésimales et som-
mation de toutes ces différences par l’expression

f (b)− f (a) =
∫ b

a
f (x)dx

C’est également Leibniz qui introduisit en particulier les notations
dy

dx
, dx et dy , très intuitives et très utilisées par les physiciens. Gottfried Wilhelm Leibniz

(1646-1716)

1. C’est dans l’ouvrage Philosophiae naturalis principia mathematica que Newton publiera en 1687 sa théorie du calcul différentiel et intégral.
2. Qu’il expose dans sa fameuse Monadologie (1714).
2. En latin Summa omnium qui donna le symbole

∫
(
∫

umma).
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1. Dérivabilité : le point de vue local

La dérivabilité est une propriété locale, i.e. f : I →R est dérivable en a si et seulement si il existe un
voisinage U de a tel que f |U∩I est dérivable en a.

1.1. Dérivabilité ponctuelle

D’un point de vue heuristique, une fonction est dé-
rivable en x0 si et seulement si son graphe est lisse
en ce point, i.e. approchable par une droite qu’on
qualifiera de tangente.

La pente de cette tangente est intuitivement la li-
mite quand x tend vers x0 de la pente de la corde
joignant les points d’abscisses x0 et x.

Définition 6.0. Dérivabilité en un point

Soit f : I →R une fonction définie sur un vrai inter-
valle I deR et x0 ∈ I.

Dérivabilité ponctuelle : On dit que f est déri-
vable en x0 lorsque le taux d’accroissement de f
en x0, noté τx0 f et défini par

τx0 f : I \ {x0} −→ R

x 7−→ f (x)− f (x0)

x −x0

admet une limite réelle quand x tend vers x0.
Dans ce cas, cette limite est appelée nombre dé-
rivé de f en x0 et on le note f ′(x0).

Dérivabilité globale : si f est dérivable en tout
x0 dans I, on note f ′ : I → R, x0 7→ f ′(x0). Cette
fonction est appelée dérivée de f .

Tangente

f (x0)
M0

x0

f (x)
M

x

y = f (x)

Corde

Soit x0 ∈ I en lequel f est dérivable ; la tan-
gente au point M0

(
x0, f (x0)

)
au graphe de

f est par définition la droite d’équation

y = f (x0)+ f ′(x0)(x −x0)

Définition 6.1. Tangente verticale

On reprend les notations de la définition précédente. Lorsque∣∣∣∣ f (x)− f (x0)

x −x0

∣∣∣∣ −−−−→x→x0
+∞

on dit que le graphe de f pour tangente en x0 la droite d’équa-
tion x = x0. Cette tangente est dite verticale.

LLG . HX 6 3
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Nous allons illustrer cette définition au moyen de la fonction racine carrée. Soit x0 ∈R+ et x ∈R+\{x0}.
Par opérations sur les limites, on a :

p
x −p

x0

x −x0
= 1p

x +p
x0

−−−−→
x→x0


1

2
p

x0
si x0 > 0

+∞ si x0 = 0

La limite
p

x −−−−→
x→x0

p
x0 est justifiée par la continuité de x 7→ p

x en x0 (cf. le chapitre AN 3). La fonc-

tion racine carrée n’est pas dérivable en 0 (mais admet sa courbe représentative admet une tangente
verticale en ce point) et dérivable en tout point x deR∗+ avec une dérivée qui vaut 1

2
p

x
·

Proposition 6.2. Dérivabilité et continuité

Soit f : I →R avec I vrai intervalle deR. Si f est dérivable en x0, alors f est continue en x0.

La réciproque est bien-sûr fausse, comme l’illustre la valeur absolue en 0 :

|x|− |0|
x −0

= |x|
x

=
{
−1 si x < 0

1 sinon

Définition 6.3. Dérivabilité à gauche, à droite

Soit f : I →R, I un vrai intervalle deR et x0 un point intérieur de I. La fonction f est dite :

dérivable à gauche au point x0 si le taux d’accroissement de f en a admet une limite à gauche
en x0. Dans ce cas, cette limite est notée f ′

g (x0), dérivée à gauche de f en x0.

dérivable à droite au point x0 si le taux d’accroissement de f en x0 admet une limite à droite en
x0. Dans ce cas, cette limite est notée f ′

d (x0), dérivée à droite de f en x0.

La dérivabilité à gauche en un point x0 s’interprète comme l’exis-
tence d’une demi-tangente à gauche au graphe de f en x0, la
droite d’équation

y = f (x0)+ f ′
g (x0)(x −x0)

De même à droite.

Comme la continuité, la dérivabilité admet une caractérisation au moyen des limites latérales.

Proposition 6.4. Dérivabilité et dérivées latérales

Soit f : I → R avec I vrai intervalle de R et x0 un point intérieur de I. La fonction f est dérivable
en x0 si et seulement si elle est dérivable à gauche et à droite en x0 et f ′

g (x0) = f ′
d (x0). En cas de

dérivabilité, on a f ′(x0) = f ′
g (x0) = f ′

d (x0).

1.2. Opérations sur fonctions dérivables

Comme dans le cas des limites et des fonctions continues, les théorèmes opératoires nous offrent
des moyens très efficaces de démontrer la dérivabilité et de calculer des dérivées. Les cas « rebels »
nécessiteront un retour à la définition via le taux d’accroissement.

LLG . HX 6 4
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Proposition 6.5. Sommes, produits et quotients

Soit I un vrai intervalle deR, u : I →R et v : I →R des fonctions dérivables en x0 ∈ I.

a. Les fonctions u + v et uv sont dérivables en x0 avec

(u + v)′(x0) = u′(x0)+ v ′(x0) et (uv)′(x0) = u(x0)v ′(x0)+u′(x0)v(x0)

b. Si v(x0) ̸= 0, alors
1

v
et

u

v
sont définies au voisinage de x0 et sont dérivables en ce point avec

(
1

v

)′
(x0) = − v ′(x0)

v(x0)2
et

(u

v

)′
(x0) = v(x0)u′(x0)− v ′(x0)u(x0)

v(x0)2

Ces calculs s’étendent par récurrence à un nombre fini quelconque de fonctions. Pour n ∈N∗ et f1,
. . ., fn des fonctions dérivables de I dansR, la somme et le produit des fi sont dérivables et(

n∑
i=1

fi

)′
=

n∑
i=1

f ′
i et

(
n∏

i=1
fi

)′
=

n∑
i=1

(
f ′

i

∏
j∈�1,n�\{i }

f j

)

Les conditions énoncés dans cette proposition sont suffisantes mais nullement nécessaires : par
exemple la somme de deux fonctions non dérivables peut être dérivable, la fonction f : x 7→ |x| est
non dérivable en 0, son opposé non plus mais la somme des deux est nulle donc dérivable.

Proposition 6.6. Composées

Soit I et J deux vrais intervalles de R, x0 ∈ I, u : I → R et v : J → R des fonctions respectivement
dérivables en x0 et u(x0) telles que u(I) ⊂ J. La fonction v ◦u est dérivable en x0 et

(v ◦u)′(x0) = u′(x0)× v ′(u(x0)
)

Nous citerons deux cas très usuels : si u > 0, alors uα est dérivable ∀α ∈R et (uα)′ = αu′uα−1. En effet,
uα = v ◦u où v : x 7→ xα, définie sur R∗+. Si u est une fonction dérivable ne s’annulant pas, alors ln|u|
est dérivable et (

ln|u|)′ = u′

u
(expression appelée dérivée logarithmique de u)

Le dernier résultat « opératoire » porte sur la réciproque d’une bijection dérivable.

Proposition 6.7. Dérivabilité d’une fonction réciproque 3

Soit f : I → J une bijection entre deux vrais intervalles deR, dérivable sur I. Soit y ∈ J et x = f −1(y).

a. f −1 est dérivable en y si et seulement si f ′( f −1(y)
) ̸= 0 et dans ce cas

(
f −1)′(y) = 1

f ′ ( f −1(y)
) ·

b. Lorsque f ′( f −1(y)
)= 0, le graphe de la fonction f −1 admet en y une tangente verticale.

3. On notera que si la continuité de la fonction réciproque f −1 est acquise, sa dérivabilité n’est pas automatique et nécessite une petite discussion.

LLG . HX 6 5



2025-2026 Laurent Kaczmarek

A

B

B′

A′

Cette proposition est une évidence géométrique : l’image d’une droite non
horizontale (resp. horizontale) de pente p par la réflexion d’axe ∆, première
bissectrice du repère, est une droite de pente 1

p (resp. verticale). En effet,

p = yB − yA

xB −xA
et

yB′ − yA′

xB′ −xA′
= xB −xA

yB − yA
= 1

p
car

{
xA′ = yA , yA′ = xA

xB′ = yB , yB′ = xB

On conclut en remarquant que les tangentes à la courbe de f en x (de pente f ′(x)) et à la courbe de
f −1 en f (x) sont symétriques par rapport à ∆.

∆
f

f −1

pente f ′(x)

pente
1

f ′(x)

x

y

y

x

∆

x

y

y

x

Horizontale

Verticale

f

f −1

Illustrons ce théorème avec la fonction racine carrée, bijection réciproque de f : x 7→ x2 définie deR+
dansR+. Pour y ∈R+, f ′( f −1(y)

)= 2
p

y . Ainsi, f −1 est non dérivable en 0 (sa courbe admettant en ce
point une tangente verticale) et dérivable en tout y > 0 avec(

f −1)′(y) = 1

2
p

y

1.3. Quelques études de dérivabilité

Voici quelques pistes pour étudier la dérivabilité d’une fonction en un point x0.

Prouver la dérivabilité d’une fonction en un point

Pour étudier la dérivabilité d’une fonction f en un point x0 :

On commence par étudier si un théorème sur les opérations est applicable.

Si ce n’est pas le cas, on pose x = x0 +u et on étudie la FI
f (x0 +u)− f (x0)

u
pour u → 0.

Ce changement de variable ramène le problème à une limite en zéro, ce qui est plus clair.

Application des théorèmes opératoires.

Soit, pour n ∈N∗, la fonction définie surR par

LLG . HX 6 6
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f : t 7→ t(
t 2 +1

)n

est dérivable surR en tant que produit des fonctions dérivables t 7→ t et t 7→ (
t 2 +1

)−n
avec

∀t ∈R , f ′(t ) = 1× (
t 2 +1

)−n + t ×−n ×2t × (
1+ t 2)−n−1 = 1+ (1−2n)t 2(

t 2 +1
)n+1

La fonction t 7→ (
t 2 +1

)−n
est dérivable en tant que composées des fonctions dérivables t 7→ t 2 +1 et

x 7→ x−n .

Produit d’une fonction dérivable par une fonction non dérivable.

Considérons à présent la fonction g : x 7→ (
x2 −1

) |x−1| définie surR. Comme x 7→ |x−1| est dérivable
en tout point de R \ {1} et x 7→ x2 −1 l’est partout, on peut appliquer le théorème sur les produit en
tout point de R \ {1} : g est dérivable en tout point de R \ {1}. Il reste à étudier la dérivabilité de g au
point 1. Pour cela, on effectue le changement de variable x = 1+u, on obtient :

g (1+u)− g (1)

u
= (u +2) |u| −−−→

u→0
0

La fonction g est donc dérivable en 0 et g ′(0) = 0.

Étude d’un raccord.

Considérons maintenant, pour un
réel λ, la fonction hλ définie surR
par

hλ(x) :=


4−x2

2
pour x < 1

1

x
+ λ

2
pour x ⩾ 1

3
2

λ
2 +1

1

3
2

1

Il s’agit d’étudier la fonction obtenue en raccordant deux expressions analytiques eau point 1. Il est
clair, par opérations sur les fonctions dérivables, que la fonction hλ est dérivable en tout point distinct
de 1 et

h′
λ(x) :=

−2x si x < 1

− 1

x2
si x > 1

La continuité en 1 étant une condition nécessaire de dérivabilité en ce point, on en déduit que le seul
cas à considérer est celui où λ= 1 (seule valeur telle que hλ admette en 1 des limites latérales égales).

Comme ∀x ⩾ 1, h1(x) = 1
x + 1

2 , h1 est dérivable à droite en 1 avec h′
1d (1) =− 1

12 =−1.

Comme h1(1) = 3
2 , on a ∀x ⩽ 1, h1(x) = 4−x2

2 , h1 est dérivable à gauche en 1 avec h′
1g (1) = −2×1

2 =−1.

Puisque h′
1g (1) = h′

1d (1), h1 est dérivable en 1.

LLG . HX 6 7
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Étude de la dérivabilité d’un prolongement par continuité.

Soit f et g les fonctions définies surR∗
par

f (x) := x sin

(
1

x

)
et g (x) := x2 sin

(
1

x

)
Comme f (x) = O(x) et g (x) = O

(
x2

)
en 0, ces fonctions sont prolongeables
par continuité en 0 en posant f (0) := 0
et g (0) := 0.

Étudions leur dérivabilité en 0.

On sait que x 7→ f (x)
x n’admet pas de limite en 0 (cf. AN 3) et g (x)

x = O(x) en 0 donc g (x)
x −−−→

x→0
0.

Ainsi f n’est pas dérivable en 0 et g est dérivable en ce point avec g ′(0) = 0. Comme on l’observe sur
les figures ci-dessus, l’amplitude x 7→ x2 « force » la courbe de g a être lisse en 0 (cf. l’entonnoir bleu).
L’amplitude x 7→ x est moins contraignante au voisinage de 0 (on peut facilement démontrer que cette
fonction admet des tangentes de pentes arbitrairement grandes au voisinage de 0).

Nous verrons un peu plus loin qu’il est possible d’étudier la dérivabilité d’un prolongement par conti-
nuité en appliquant le théorème de la limite de la dérivée.

On traitera avec profit le test
(
E6.1

)
.

2. Propriétés globales des fonctions dérivables

Les théorèmes de Rolle et des accroissements finis sont les principaux outils pour relier les propriétés
d’une fonction dérivable à celles de sa dérivée.

2.1. Les théorèmes de Rolle et des accroissements finis

Le lecteur est renvoyé au chapitre AN 3, où les
notions d’extremum local et global ont été dé-
finies.

Il est géométriquement clair qu’une fonction
de R dans R dérivable est de dérivée nulle en
tout point où elle admet un extremum local.

Ce résultat se généralise à des fonctions f : I →
R dérivable où I est un intervalle et des points
intérieurs à I.

c1

c2

c3

c4

Maximum local

Minimum global

Minimum local

Maximum global

Proposition 6.8. Condition nécésssaire d’extremum en un point intérieur

Soit c un point intérieur d’un vrai intervalle I et f : I →R dérivable en c. Si f admet en c un extre-
mum local, alors f ′(c) = 0.

LLG . HX 6 8
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1
2

1

10

y = f (x)

1

10

y = g (x)

Les hypothèses de ce théorème sont mini-
males.

La fonction f : [0,1] → R ci-contre vérifie
toutes les hypothèses sauf la dérivabilité en 1

2 ·
De même, la fonction g : [0,1] → R vérifie
toutes les hypothèses sauf qu’elle atteint un
maximum et un minimum locaux en 1 et 0, qui
ne sont pas intérieurs à [0,1].

Dans les deux cas, les dérivées f ′ et g ′ ne s’annule pas là où elles sont définies.

Le théorème suivant date de la fin du XVII-ème siècle. Il a été énoncé par Michel Rolle en 1690 sous
la forme suivante : entre deux racines d’une équation est comprise une racine de l’équation dérivée 4.

Théorème 6.9. Théorème de Rolle

Soit a < b et f : [a,b] →R continue sur [a,b] et dérivable sur ]a,b[ telle que f (a) = f (b).
Il existe c ∈ ]a,b[ tel que f ′(c) = 0.

On peut donner deux interprétations du théorème de Rolle :

a bc

Géométrique : f admet un extremum local en un point inté-
rieur à [a,b].

Cinématique : f (t ) représente l’altitude à l’instant t d’un mo-
bile se déplaçant verticalement sur un axe ; f (a) = f (b) signi-
fie que le mobile revient à la même altitude en t = b qu’en
t = a, cela impose que sa vitesse s’annule entre a et b.

f (a)=
f (b)

f (c)

Les fonctions f (cf. les figures illustrant le
théorème de Rolle ci-dessus), h et k (cf. ci-
contre) illustrent la minimalité des hypothèses
du théorème des accroissements finis : f véri-
fie tout sauf la dérivabilité en 1

2 , idem pour h
sauf h(0) = h(1) et idem pour k sauf la conti-
nuité en 0.

1

10

y = h(x)

1

10

y = k(x)

Théorème 6.10. Théorème des accroissements finis

Soit a < b et f : [a,b] →R continue sur [a,b] et dérivable sur ]a,b[.
Il existe c ∈ ]a,b[ tel que f (b)− f (a) = (b −a) f ′(c).

4. En langage moderne : entre deux solutions de f (x) = 0, on trouve une solution de f ′(x) = 0.

LLG . HX 6 9
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a bc

On peut reconduire les deux interprétations précédentes :

Géométrique : il existe une tangente au graphe de f parallèle à
la corde joignant les extrémités du graphe de f .

Cinématique : il existe un instant c où la vitesse instantanée est
égale à la vitesse moyenne entre les instants a et b.

De f ′ en f et inversement

On peut transformer des hypothèses sur f ′ en conclusion sur f de deux manières :

si f ′ est continue, on peut utiliser l’intégrale et f (x) = f (a)+
∫ x

a
f ′(t )dt .

sinon, seul le théorème des accroissements finis est applicable.

Pour transformer des hypothèses sur f en conclusion sur f ′, on revient au taux d’accroissement.

Théorème 6.11. Théorème de la limite de la dérivée

Soit I un vrai intervalle de R. Pour a ∈ I et f : I → R continue sur I, dérivable sur I \ {a} telle que
f ′(t ) −−−→

t→a
ℓ ∈R, on a

f (t )− f (a)

t −a
−−−→
t→a

ℓ
En particulier, si ℓ ∈ R, alors f dérivable en a
et f ′(a) = ℓ.

Ce résultat est géométriquement très intuitif : le graphe de f
« tombe » sur le point (a, f (a)) avec une pente égale à ℓ (cf.
l’exemple ci-contre).

On peut même l’affiner en ne supposant la continuité de f que
sur I\{a} : on prouve 5alors que f est prolongeable par continuité
en a puis dérivable en a avec f ′(a) = ℓ.

Considérons la fonctionφ : x 7→ exp
(
− 1

x2

)
définie surR∗. Elle est continue surR∗ et prolongeable par

continuité en 0 par 0 puisque φ(x) −−−→
x→0

0. La fonction φ est dérivable surR∗ et

φ′(x) = 2

x3
exp

(
− 1

x2

)
−−−→
x→0

0

Cette limite est justifiée par la croissance comparée suivante X3 ≪+∞ eX2
et une composition à droite

par x 7→ 1
|x| · On déduit du théorème de la limite de la dérivée que φ est dérivable en 0 avec φ′(0) = 0.

On pourra aborder le test
(
E6.2

)
.

4. Le programme se limite à l’intégrale des fonctions continues par morceaux.
5. Par des outils qui ne sont pas au programme.
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2.2. L’inégalité des accroissements finis

Le théorème des accroissements finis a pour corollaire immédiat qu’une fonction dérivable à dérivée
bornée sur un intervalle est lipschitzienne 6.

Proposition 6.12. Inégalité des accroissements finis
(
E6.3

)
Soit I un vrai intervalle deR, k ∈R+ et f : I →R dérivable.

a. S’il existe (m,M) ∈R2 tels que m ⩽ f ′ ⩽M alors

∀(a,b) ∈ I2 tel que a ⩽ b, on a m(b −a) ⩽ f (b)− f (a) ⩽ M(b −a)

b. En particulier, s’il existe k ∈R+ tel que | f ′| ⩽ k, alors f est k-lipschitzienne sur I, i.e.

∀(a,b) ∈ I2 ,
∣∣ f (a)− f (b)

∣∣ ⩽ k |a −b|

Comme |sin′| ⩽ 1, la fonction sinus est 1-lipschitzienne surR. Nous l’avons déjà vu dans AN 3, l’inter-
prétation géométrique est claire : pour tout x0 ∈ I, le graphe de f est contenu dans le secteur angulaire
d’inéquation

∣∣ y − f (x0)
∣∣ ⩽ k |x −x0|.

x0

y0

y = y0 −k(x −x0)
y = y0 +k(x −x0)

La condition∣∣ y − y0
∣∣ ⩽ k |x −x0|

où y0 := f (x0), équivaut à
y0 −k(x −x0)⩽ y et

y ⩽ y0 +k(x −x0) si x ⩾ x0

y0 +k(x −x0)⩽ y et

y ⩽ y0 −k(x −x0) si x ⩽ x0

6. En supposant f ′ continue, on peut déduire de m ⩽ f ′(t ) ⩽ M pour tout t dans [a,b] et a < b que
∫ b

a
mdt︸ ︷︷ ︸

m(b−a)

⩽
∫ b

a
f ′(t )dt︸ ︷︷ ︸

f (b)− f (a)

⩽
∫ b

a
Mdt︸ ︷︷ ︸

M(b−a)
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Fonctions contractantes et suites récurrentes

L’inégalité des accroissements finis est un outil très efficace pour étudier la convergence de suites
récurrentes

∀n ∈N , un+1 = f (un)

lorsque u0 appartient à un intervalle [a,b] stable par f sur lequel f est dérivable et vérifie | f ′|⩽ λ

où λ ∈ [0,1[. Une telle fonction est dite contractante.

Sous ces hypothèses, il est classique que f admet un point fixe sur [a,b] (cf. le chapitre AN 3). Par
l’inégalité des accroissements finis, puisque (un)n∈N est à valeurs dans [a,b], on a pour n ∈N∣∣ f (un)− f (ℓ)

∣∣ ⩽ λ |un −ℓ| d’où
∣∣un+1 −ℓ

∣∣ ⩽ λ |un −ℓ|
Puis, par une récurrence facile, ∀n ∈N , |un − ℓ| ⩽ λn |u0 − ℓ|. Comme λ ∈ [0,1[, on a λn −−−−−→

n→+∞ 0 et

donc un −−−−−→
n→+∞ 0 par le théorème d’encadrement.

Ce résultat est particulièrement intéressant dans le cas où
f est décroissante, pour lequel l’étude de la suite peut être
délicate. Par exemple, considérons u0 ∈R et

∀n ∈N , un+1 = cosun

On a u1 ∈ [−1,1] puis u2 ∈ [0,1] car [−1,1] ⊂ [
π
2 , π2

]
. Comme

[0,1] est stable par cos, on a ∀n ⩾ 2, un ∈ [0,1]. Puisque
cos′ = −sin,

∣∣cos′
∣∣ est majorée par λ := sin1 sur [0,1]. Le

réel λ appartenant à [0,1[, le cosinus est contractant sur
[0,1] et un −−−−−→

n→+∞ ℓ, où ℓ est l’unique point fixe de cos.

2.3. Sens de variation et dérivée

Nous cloturons ce paragraphe par l’application la plus commune de la dérivation : l’étude des varia-
tions.

Proposition 6.13. Dérivée et sens de variation
(
E6.4

)
Soit I un vrai intervalle et f : I →R dérivable.

a. La fonction f est croissante (resp. décroissante) si et seulement si f ′ ⩾ 0 (resp. ⩽) ;

b. La fonction f est strictement croissante (resp. décroissante) si et seulement si f ′ ⩾ 0 (resp. ⩽)
et f ′ ne s’annule sur aucun intervalle ouvert non vide contenu dans I.

c. La fonction f est constante si et seulement si f ′ = 0.

1

−1

0

L’ensemble de départ doit être un intervalle :

f ′ = 0 f est constante

Par exemple, la fonction définie surR∗ par

x 7→ x

|x|
est de dérivée nulle surR∗, mais non constante.
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Pour justifier la stricte monotonie sur un intervalle d’une fonction f dérivable, on étudie son signe et
on vérifie que l’ensemble des points où sa dérivée s’annule ne contient aucun vrai intervalle.

3. Fonctions circulaires réciproques

Dans ce paragraphe, nous allons définir trois nouvelles fonctions trigonométriques, bijections réci-
proques de cos, sin et tan sur des intervalles bien choisis. Ce sera l’occasion de mettre en applications
de nombreux théorèmes établis dans les chapitres AN 3, AN 4 et AN 5.

Définition 6.14. Arcsinus
(
E6.5

)
L’arcsinus est la bijection réciproque de[

−π
2

,
π

2

]
−→ [−1,1]

x 7−→ sin x Arcsin x

x

π

2

−π
2

1

−1

On a arcsin(0) = 0, arcsin(±1) =±π
2 , arcsin(±1/

p
2) =±π

4 , arcsin(±p3/2) =±π
3 et arcsin(±1/2) =±π

6 ·
Ces résultats se retrouvent sur cercle trigonométrique. L’arcsinus du réel x ∈ [−1,1] est l’unique élé-
ment de

[− π
2 , π2

]
dont le sinus vaut x.

π

2

−π
2

π

2

−π
2

arcsin

sin
1

−1

π

2

−π
2

1

−1
arcsin

On déduit du tableau de variation et du graphe du
sinus ceux de l’arcsinus :

x

arcsin x

−1 1

−π
2−π
2

π
2
π
2

Proposition 6.15. Propriétés de l’arcsinus
(
E6.6

)
a. La fonction arcsin est impaire et continue sur [−1,1] et ∀x ∈ [−1,1], cos(arcsin x) =

p
1−x2.

b. L’arcsinus est dérivable sur ]−1,1[ avec, ∀x ∈]−1,1[, arcsin′ x = 1p
1−x2

·

c. L’arcsinus n’est pas dérivable en ±1, sa courbe graphe admet en ±1 une tangente verticale.

Afin d’illustrer ces différentes propriétés, étudions la fonction f : x 7→ arcsin(sin x). Comme sin est
à valeurs dans l’ensemble de définition [−1,1] de l’arcsinus, f est définie surR. Comme sin et arcsin
sont impaire, leur composée f l’est également. Comme sin est 2π-périodique, f l’est également. Ainsi,
nous allons limiter l’étude de f à [0,π]. Pour x ∈ [

0, π2
]
, f (x) = x par définition de l’arcsinus. Pour

x ∈ [
π
2 ,π

]
, on a π−x ∈ [

0, π2
]

et sin x = sin(π−x) d’où f (x) = f (π−x) =π−x. On en déduit le tracé de f
sur [0,π], que l’on complète par une symétrie par rapport à l’origine pour obtenir le tracé sur [−π,π],
on translate alors une infinité de fois ce motif pour construire toute la courbe :
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π

2

−π
2

π

2

−π
2

Définition 6.16. Fonction arccosinus
(
E6.7

)
L’arccosinus est la bijection réciproque de la fonction définie par

[0,π] −→ [−1,1]

x 7−→ cos x

π

−1

1

0

π

2

Arccos x

x

On a arccos(1) = 0 et
arccos(−1) =π, arccos

(1
2

)= π
3 , arccos

(
1p
2

)
= π

4

arccos(0) = π
2 , arccos

(p
3

2

)
= π

6 ,arccos
(−1

2

)= 2π
3

arccos
(
− 1p

2

)
= 3π

4 ,arccos
(
−

p
3

2

)
= 5π

6

On retrouve les valeurs particulières de l’arccosinus sur le cercle trigonométrique. L’arccosinus de
x ∈ [−1,1] est l’unique réel appartenant à l’intervalle [0,π] dont le cosinus vaut x.

Les graphes de l’arccosinus sur [−1,1] et du cosi-
nus sur [0,π] sont symétriques par rapport à la pre-
mière bissectrice. On déduit des variations du cosi-
nus celles de l’arccosinus.

x

arccos x

−1 1

ππ
00 −1

π

π

1

10

π

2

π

2

cos

arccos

π

−1 1

π

2

arccos

Proposition 6.17. Propriétés de l’arccosinus
(
E6.8

)
a. La fonction arccos est continue sur [−1,1] et ∀x ∈ [−1,1], sin(arccos x) =

p
1−x2.

b. L’arccosinus est dérivable sur ]−1,1[ avec ∀x ∈]−1,1[, arccos′ x =− 1p
1−x2

·

c. L’arccosinus n’est pas dérivable en ±1, son graphe admet en ces points une tangente verticale.

d. Pour tout réel x ∈ [−1,1], arccos x +arcsin x = π

2
·
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Définition 6.18. Fonction arctangente
(
E6.9

)
L’Arctangente, notée arctan, est la bijection réciproque de la fonc-
tion ]

−π
2

,
π

2

[
−→ R

x 7−→ tan x

x

tan′ x

tan x

−π
2

π
2

+

−∞
+∞

0

0

La fonction tangente a déjà été
étudiée en détail dans le chapitre
AN 4.

Elle réalise une bijection de l’in-
tervalle

]− π
2 , π2

[
surR.

π

2

−π
2

tan

x

Arctan x

Les valeurs remarquables de l’arctangente se lisent sur le cercle trigonomé-
trique : l’arctangente d’un réel x est l’unique réel appartenant à

]− π
2 , π2

[
dont la tangente vaut x. On a

arctan(±1) =±π
4

, arctan(0) = 0, arctan

(
± 1p

3

)
=±π

6
, arctan

(
±p3

)
=±π

3

π

2

−π
2

π

2

−π
2

tan

arctan

x

arctan x

−π
2

π
2

−∞−∞
+∞+∞

En particulier, arctan x −−−−−→
x→±∞ ±π

2
·

π

2

−π
2

arctan

Les formules de trigonométrie directe (addition, duplication, etc.) admettent des analogues en trigo-
nométrie réciproque. Considérons par exemple, deux réels positifs a et b. Puisque arctan a et arctanb
appartiennent à

[
0, π2

[
, on a

−π
2
< arctan a −arctanb < π

2

Par bijectivité de arctan :R→ ]− π
2 , π2

[
, il existe un unique réel c tel que arctan a −arctanb = arctanc.

On peut expliciter c au moyen de la formule d’addition de la tangente :

LLG . HX 6 15



2025-2026 Laurent Kaczmarek

c = tan(arctan a −arctanb) = tanarctan a − tanarctanb

1+ (tanarctan a)(tanarctanb)
= a −b

1+ab

Ainsi, nous venons d’établir la formule suivante :

∀(a,b) ∈R2
+ , arctan a −arctanb = arctan

a −b

1+ab

On pourra traiter le test
(
E6.10

)
.

La fonction arctangente permet d’expliciter un argument d’un nombre complexe qui n’est pas imagi-
naire pur.

Proposition 6.19. Argument

our (x, y) ∈R∗+×R, arg(x + i y) = arctan
( y

x

)
[2π].

Lorsque x < 0, on pose −z = −x − i y = √
x2 + y2e iθ. Comme −x > 0, on peut

choisir θ= arctan −y
−x = arctan y

x , d’où

z = −
√

x2 + y2e iθ =
√

x2 + y2e i (θ+π) et donc arg(x+i y) =π+arctan
( y

x

)
[2π] x

y
z = x + i y

θ

tanθ= y

x

0

Cherchons à simplifier α := arctan2 + arctan3. Par la proposition précédente et les propriétés des
arguments, on a

α = arg(1+2i )+arg(1+3i ) [2π] = arg
(
(1+2i )(1+3i )

)
[2π] = arg(−5+5i ) [2π] = arg(−1+ i ) [2π]

= 3π

4
[2π]

Comme 0 < arctan2 < π
2 et 0 < arctan3 < π

2 , on a 0 < α<π. On en déduit que α= 3π
4 ·

On peut aussi appliquer la formule d’addition de la tangente. Comme arctan1 < arctan2 < π
2 et

arctan1 < arctan3 < π
2 , on a π

2 < α<π, ainsi

tanα = tanarctan2+ tanarctan3

1− (tanarctan2)(tanarctan3)
= 5

−5
= −1 = tan

3π

4

On en déduit que α= 3π
4 [2π]. Comme π

2 < α<π, on en déduit que α= 3π
4 ·

Proposition 6.20. Propriétés de l’arctangente
(
E6.10

)
a. La fonction arctan est impaire et dérivable surR avec, ∀x ∈R, arctan′ x = 1

1+x2
·

b. Pour tout réel x non nul, arctan x +arctan
1

x
= signe(x) · π

2
où signe(x) =

{
1 si x > 0

−1 si x < 0

Revenons au calcul de α, entrepris de deux façons ci-dessus. Cette proposition nous ouvre une troi-
sième voie :

α = arctan3−arctan
1

2
+ π

2
= arctan

3− 1
2

1+ 3
2

+ π

2
= arctan1+ π

2
= π

4
+ π

2
= 3π

4

par la formule « d’addition » démontrée ci-dessus.
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4. Dérivées successives

Sous réserve d’existence, on peut itérer la dérivation pour définir la dérivée de la dérivée, etc.

Définition 6.21. Dérivées successives

Soit I un vrai intervalle, f : I →R.

On définit par récurrence les dérivées successives de f (sous réserve d’existence) :

On note f (0) := f .

On note, pour n ∈N∗ et sous réserve d’existence, f (n) := (
f (n−1)

)′
(dérivée n-ième de f ).

Classe d’une fonction.

La fonction f est dite de classe C 0 si elle est continue sur I.

Soit n ∈N∗. La fonction f est dite de classe C n si elle est dérivable n fois et si f (n) est continue.

La fonction f est dite de classe C∞ si elle est indéfiniment dérivable sur I.

Pour n ∈N∪{∞}, on note

{
C n(I,R) l’ensemble des fonctions de classe C n sur I à valeurs dansR

Dn(I,R) l’ensemble des fonctions n fois dérivables sur I à valeurs dansR

On emploie parfois l’expression régularité d’une fonction pour désigner sa classe. On a bien sûr :

C∞(I,R) ⊂ ·· · ⊂ C n+1(I,R) ⊂ C n(I,R) ⊂ Dn(I,R) ⊂ C n−1(I,R) ⊂ ·· · ⊂ C 1(I,R) ⊂ C 0(I,R)

On démontre facilement par récurrence les résultats suivants :

Formulaire

Pour tout entier naturel n et tout réel x, cos(n)(x) = cos
(
x +n

π

2

)
, sin(n)(x) = sin

(
x +n

π

2

)
.

Pour tout n ∈N, et f : x 7→ 1

x
, ∀x ∈R∗ , f (n)(x) = (−1)nn!

xn+1
·

Pour tout (n,m) ∈N2, et f : x 7→ xm , ∀x ∈R , f (n)(x) =


m!

(m −n)!
xm−n si m ⩾ n

0 si m < n

.

Proposition 6.22. Opérations
(
E6.11

)
Soit n ∈N, I et J deux vrais intervalles deR, u : I →R et v : I →R de classe C n .

a. Les fonctions u + v et uv sont de classe C n et vérifient

(u + v)(n) = u(n) + v (n) et (uv)(n) =
n∑

k=0

(
n

k

)
u(k)v (n−k)

b. Si w : J →R est de classe C n telle que u〈I〉 ⊂ J, alors w ◦u est de classe C n .

c. Si n ⩾ 1 et u′ > 0, u réalise une bijection de I sur u〈I〉 et u−1 est de classe C n .
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On adapte bien-sûr le c) de cette proposition au cas où u′ < 0.

L’expression sommatoire de (uv)(n) est connue sous le nom de « formule de Leibniz ». Considérons
par exemple la fonction f : x 7→ x2eαx définie sur R, où α est fixé dans R∗. Elle est de classe C∞ en
tant que produit des deux fonctions indéfiniment dérivables u : x 7→ x2 et v : x 7→ eαx . On déduit de la
formule de Leibniz que

∀n ∈N , ∀x ∈R , f (n)(x) =
n∑

k=0

(
n

k

)
u(k)(x)v (n−k)(x) = (

αn x2 +nαn−1x +n(n −1)αn−2)eαx

On pourra conclure cette section par le test
(
E6.12

)
.

5. Extension aux fonctions à valeurs complexes

On étend la notion de dérivabilité aux fonctions de la variable réelle à valeurs complexes en reprenant
mot pour mot la définition.

Comme nous l’avons remarqué dans le cahpitre AN 3, une fonction f :
I → C (où I est un intervalle de R) s’interprète comme une courbe du
plan (un point du plan mobile d’affixe f (t ) à l’instant t ).

En cas de dérivabilité, f ′(t ) est l’affixe du vecteur vitesse à l’instant t .

Par exemple, f : R→ e iωt (pour ω réel) correspond à un mouvement
circulaire à vitesse angulaire constante ω dans le sens trigonométrique.

e iωt

ωt

Comme pour la continuité, la dérivabilité se caractérise simplement au moyen des parties réelles et
imaginaires.

Proposition 6.23. Dérivabilité ponctuelle

Soit I un vrai intervalle de R, t0 ∈ I et f : I →C. La fonction f est dérivable en t0 si et seulement si
Re( f ) et Im( f ) sont dérivables en t0 et, dans ce cas, f ′(t0) = Re( f )′(t0)+ i Im( f )′(t0).

Les résultats sur les opérations s’étendent sans peine à ce cadre. Pour rester dans le cadre de ce cha-
pitre d’une variable réelle, nous limiterons le théorème de composition au cas suivant.

Proposition 6.24. Une composée

Pour φ : I →C dérivable, exp◦φ est dérivable et (exp◦φ)′ = φ′(exp◦φ).

En particulier, pour tout ν ∈C et f : t 7→ eνt , f est dérivable et f ′(t ) = νeνt .

Le théorème de Rolle n’est plus valable sur C : contrairement à la dimension un, il est possible en
dimension deux de partir d’un point et d’y revenir sans que la vitesse ne s’annule. Par exemple, pour le
mouvement circulaire f : t 7→ e i t , on a f (0) = f (2π) mais f ′(t ) = i e i t ̸= 0 pour tout réel t . En revanche,
l’inégalité des accroissements reste valable dans ce cadre.

LLG . HX 6 18



2025-2026 Laurent Kaczmarek

On généralise les dérivées successives et les classes de fonctions à ce cadre. Par exemple, pour f fonc-
tion n fois dérivable sur I, on a

Re
(

f (n)) = Re( f )(n) et Im
(

f (n)) = Im( f )(n)

On peut en déduire les dérivées successives de la fonction g : x 7→ cos(x)ex définie sur R en remar-
quant que g := Re f où f : t 7→ e i xex . Comme f (t ) = e(1+i )t pour tout n ∈N, on a

∀(n, x) ∈N×R , f (n)(t ) = (1+i )ne(1+i )t = p
2

n
e t e i

(
t+ nπ

4

)
et g (n)(t ) = Re

(
f (n)(t )

) = p
2

n
e t cos

(
t + nπ

4

)
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6. Tests

6.1. 4 �

Étudier la dérivabilité de f : x 7→ x|x −1|.

6.2. 4 �

Soit a ∈ R, h > 0 et f : [a, a +h] → R dérivable sur ]a, a +h[, continue sur [a, a +h]. Montrer que
∃θ ∈ ]0,1[, f (a +h) = f (a)+h f ′ (a +θh). Calculer θ dans le cas d’un trinôme du second degré.

6.3. 4 �

Montrer que sin(ln(n +1))− sin(ln(n)) −−−−−→
n→+∞ 0.

6.4. 4 �

Soit f : x 7→ x +1

2
−

√∣∣x2 −1
∣∣. Domaine de définition, variations puis graphe de f .

6.5. 4 �

Calculer arcsinsinα pour α= 3π
7 ,−2π

3 et 19π
7 ·

6.6. 4 �

Soit x ∈ [−1,1]. Résoudre l’équation sinθ= x d’inconnue réelle θ.

6.7. 4 �

Calculer arcsin(cosα) lorsque α= 3π
7 ,−2π

3 puis 19π
7 ·

6.8. 4 �

Simplifier, pour tout x ∈ [−1,1], sin(2arccos x) et sin(4arccos x).

6.9. 4 �

Calculer arctan(tanα) lorsque α= 33π
7 ,−8π

3 puis 19π
7 ·

6.10. 4 �

Prouver la formule arctan
1

2
+arctan

1

5
= arctan

7

9
·

6.11. 4 �

a. Déterminer deux réels a et b tels que ∀x ̸= ±1,
1

1−x2
= a

1+x
− b

1−x
.

b. Calculer la dérivée n-ième surR \ {±1} de la fonction x 7→ f (x) = 1

1−x2
.

6.12. 4 �

En dérivant de deux façons différentes x 7→ x(1+x)n , montrer que
n∑

k=0
(k +1)

(
n

k

)
= 2n−1(n +2).
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7. Solutions des tests

6.1. ; �

La fonction f est dérivable en tout point x0 ∈
R\ {1} en tant que produit de fonctions déri-
vables en x0.

Posons x = 1+u. Pour tout u ̸= 0, on a

τ0( f )(u) = f (1+u)− f (1)

u
= (1+u)|u|

u
= |u|+ signe(u)

Ainsi τ0( f )(u) −−−−→
u→0+ 1 et τ0( f )(u) −−−−→

u→0− −1.

La fonction f admet des dérivées à droite et
à gauche en 0 qui sont distinctes : elle n’est
pas dérivable en 0.

6.2. ; �

Les hypothèses sont réunies pour appliquer
le théorème des accroissements finis à f sur
[a, a +h] : il existe c ∈]a, a +h[ tel que f (a +
h)− f (a) = h f ′(c). En posant θ := (c−a)/h, on
a bien f (a+h) = f (a)+h f ′(a+θh) et θ ∈ ]0,1[.

Après tout calcul, on trouve θ= 1/2.

6.3. ; �

Notons f = sin◦ ln. Comme sin′ = cos est bor-
née par 1, sin est 1-lipschitzienne sur R. Ainsi,
pour tout n ∈N∗,∣∣ f (n +1)− f (n)

∣∣⩽ ln

(
1+ 1

n

)
et, d’après le théorème d’encadrement,

f (n +1)− f (n) −−−−−→
n→+∞ 0

6.4. ; �

a. La fonction f est clairement définie sur R.
On a

f (x) =
{

x+1
2 −

p
1−x2 si−1 < x < 1

x+1
2 −

p
x2 −1 sinon.

La fonction f est dérivable surR\ {±1} et

f ′(x) =
{1

2 + xp
1−x2

si−1 < x < 1
1
2 − xp

x2−1
si x <−1 ou x > 1.

Puisque la dérivée tend vers l’infini aux
points ±1 la courbe C f possède des tan-
gentes verticales en ces deux points. Étu-
dions le signe de f ′.

Soit x < −1. Alors f ′(x) est positive comme
somme de deux termes positifs.

Soit −1 < x < 0 ; (∗) est justifiée par le fait
que deux réels positifs sont rangés dans le
même ordre que leurs carrés.

f ′(x)⩾ 0 ⇐⇒ 1

2
⩾− xp

1−x2

⇐⇒
√

1−x2 ⩾−2x
(∗)⇐⇒

(√
1−x2

)2
⩾ (−2x)2

⇐⇒ 1−x2 ⩾ 4x2

⇐⇒ x2 ⩽
1

5
⇐⇒|x|⩽p

0.2 ≈ 0.45

Soit 0 ⩽ x < 1. Alors f ′(x) est positive
comme somme de deux termes positifs.

Soit x > 1 ; (∗) est justifiée par le fait que
deux réels positifs sont rangés dans le même
ordre que leurs carrés.
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f ′(x)⩾ 0 ⇐⇒ 1

2
⩾

xp
x2 −1

⇐⇒
√

x2 −1⩾ 2x
(∗)⇐⇒

(√
x2 −1

)2
⩾ (2x)2

⇐⇒ x2 −1⩾ 4x2

⇐⇒ −1⩾ 3x2

Cette dernière inégalité n’est jamais vraie.

Conclusion : la fonction f est croissante
sur chacun des intervalles ] − ∞,−1] et
[−p0.2,1]. Elle est décroissante sur chacun
des intervalles [−1,−p0.2] et [1,∞[.

b. Voici le graphe de f :

6.5. ; �

Puisque 3π/7 ∈ [−π/2,π/2], on a

arcsin(sin(3π/7)) = 3π/7

Puisque sin(−2π/3) = sin(−π/3) et que
−π/3 ∈ [−π/2,π/2], on a aussi

arcsin(sin(−2π/3)) =−π/3

Puisque sin(19π/7) = sin(5π/7) et 5π/7 ∈
[−π/2,π/2], on a

arcsin(sin(19π/7)) = 5π/7

6.6. ; �

On a sin(θ) = x si et seulement si

sin(θ) = sin(arcsin(x))

ainsi :

sin(θ) = x ⇐⇒


∃ k ∈Z,

θ=


arcsin(x) + 2kπ

ou

−arcsin(x) + (2k +1)π

6.7. ; �

Puisque 3π/7 ∈ [0,π], on a

arccos(cos(3π/7)) = 3π/7

Puisque cos(−2π/3) = cos(2π/3) et 2π/3 ∈
[0,π], on peut en conclure que

arccos(cos(−2π/3)) = 2π/3

Puisque cos(19π/7) = cos(5π/7) et 5π/7 ∈
[0,π], on a

arccos(cos(19π/7)) = 5π/7

6.8. ; �

Soit x ∈ [−1,1]. Posons θ= arccos(x). On a

sin(2θ) = 2sin(θ)cos(θ) = 2x
√

1−x2

De plus,

cos(2θ) = 2cos2(θ)−1 = 2x2 −1

donc

sin(4θ) = 2sin(2θ)cos(2θ)

= 4x
√

1−x2
(
2x2 −1

)

Commentaire.

Puisque cos(arccos x) = x et sin(arccos x) =p
1−x2, l’idée directrice de ce genre

d’exemple est de tout exprimer en fonc-
tion de cos et sin.

6.9. ; �

Puisque 33π/7 = 5π − 2π/7 et −2π/7 ∈] −
π/2,π/2[, on a

arctan(tan(33π/7)) =−2π/7

Puisque −8π/3 = −3π + π/3 et π/3 ∈] −
π/2,π/2[, on a

arctan(tan(−8π/3)) =π/3
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Puisque 19π/7 = 3π − 2π/7 et −2π/7 ∈] −
π/2,π/2[, on a

arctan(tan(19π/7)) =−2π/7

6.10. ; �

Posons α = arctan(1/2) + arctan(1/5). La fonc-
tion arctangente est strictement croissante
sur R. Comme 1/2 < 1,1/5 < 1 et 0 =
arctan(0),π/4 = arctan(1) on en déduit que 0 <
α < 2π/4 = π/2. D’après la formule d’addition
de la tangente,

tan(α) = 1/2+1/5

1−1/10
= 7

9

ainsi α= arctan(7/9).

6.11. ; �

a. On prouve après mise au même dénomina-
teur et identification des coefficients que

a = 1

2
, b =−1

2

b. On prouve par une récurrence sans diffi-
culté que

g : x 7→ 1

1+x
est de classe C n sur R \ {−1}, et que sur cet
ensemble,

g (n)(x) = (−1)nn!

(1+x)n+1

On en déduit que la fonction

h : x 7→ 1

1−x

est de classe C∞ sur R \ {1}, et que sur cet
ensemble,

h(n)(x) = n!

(1−x)n+1

La fonction f est donc de classe C∞ sur
R\ {±1}, et sur cet ensemble,

f (n)(x) = n!

2(1−x)n+1
+ (−1)nn!

2(1+x)n+1

6.12. ; �

D’après la formule du binôme,

x(1+x)n =
n∑

k=0

(
n

k

)
xk+1

donc
x(1+x)n

x
=

n∑
k=0

(
n

k

)
(k +1)xk

D’après la formule de dérivation d’un produit,

x(1+x)n

x
= (1+x)n +nx(1+x)n−1

= (1+x +nx)(1+x)n−1

On évalue alors l’égalité en x = 1 pour conclure.
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