Fonctions dérivables

Apres l'étude des fonctions continues, nous allons nous intéresser aux fonctions
admettant un graphe lisse, i.e. admettant une tangente en chacun de ses points.
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est né des travaux indépendants de Gottfried Wilhelm Leibniz et [saac Newton au XVII¢ siecle.

Larevendication de la paternité de cette nouvelle théorie fut I'objet de vives polémiques entre
les deux hommes et cette controverse affecta beaucoup Leibniz sur la fin de sa vie. Entre 1664 et 1671,
Newton travaille sur son ouvrage Methodus fluxionum et serierum infiniturum qui ne sera publié
qu’apres sa mort en 1736 . Il y introduit ce qu'il appelle le calcul des fluxions :

L E calcul différentiel et intégral, dont seul 'aspect différentiel nous concerne dans ce chapitre,

« J’appellerai quantités fluentes, ou simplement fluentes, ces quanti-
tés que je considére comme augmentées graduellement et indéfini-
ment, je les représenterai par les derniéres lettres de I’alphabet v, x, y
et z pour les distinguer des autres quantités qui, dans les équations,
sont considérées comme connues et déterminées, qu’on représente
par les lettres initiales a, b, c, etc., je représenterai par les mémes der-
nieres lettres surmontées d’un point v, %, ...,y et Z les vitesses dont
les fluentes sont augmentées par le mouvement qui les produit, et,
que par conséquent, on peut appeler fluxions... »

Ainsi pour Newton les quantités fluentes x, y sont des fonctions sou-
mises a des variations, a des changements, et les fluxions %, ...,y de
Isaac Newton (1642-1727) ces fluentes mesurent leurs variations.

Il s'intéresse un peu plus loin dans I'ouvrage au probléme inverse de la détermination des fluentes
X,), etc. a partir de la connaissance des fluxions %, y, etc. C’est le probleme réciproque du calcul
différentiel, a savoir le calcul intégral que nous avons mentionné ci-dessus et que nous aborderons
dans un chapitre ultérieur. Leibniz publie pour la premiére fois ses travaux sur le calcul différentiel
en 1684, dans les Acta eruditorum. Cependant, de nombreuses notes manuscrites produites sur les
dix années antérieures contiennent déja ses idées sur la question. Le point de départ de Leibniz sur
ce sujet est plutdt celui des séries de nombres, pour lesquelles il calcule les différences des termes
successifs qu’il va sommer. Cette idée présente dans son De arte combinatoria de 1666 repose sur sa
vision philosophique du monde qui consiste & vouloir relier le tout et la partie®. Par exemple la série
de nombres 1,5,9,15,22,30 donne lieu aux différences de termes successifs 4,4,6,7,8 dont la somme
44+4+6+7+8 =29 est évidemment la différence entre le dernier et le premier terme de la série initiale,
a savoir 30 — 1. A partir de cette idée qu’il étendit aux séries infinies de nombres, puis au « cas d'une
variable continue », il obtint son calcul différentiel et intégral.

Larelation4+4+6+7+8 =30—1n’est autre qu’'une version discrete et
finie du théoréme fondamental du calcul intégral. Ce théoreme relie
dérivées et intégrales, c’est-a-dire différences infinitésimales et som-
mation de toutes ces différences par I'expression

b
fb) - f(a) =f f(x)dx

C’est également Leibniz qui introduisit en particulier les notations
%, dx et dy, trés intuitives et tres utilisées par les physiciens. Gottfried Wilhelm Leibniz

(1646-1716)

1. C’est dans I'ouvrage Philosophiae naturalis principia mathematica que Newton publiera en 1687 sa théorie du calcul différentiel et intégral.
2. Qu'il expose dans sa fameuse Monadologie (1714).
2. Enlatin Summa omnium qui donna le symbole [ (f umma).
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1. Dérivabilité : le point de vue local

La dérivabilité est une propriété locale, i.e. f : 1 — R est dérivable en a si et seulement si il existe un

voisinage U de a tel que f|yn; est dérivable en a.

1.1. Dérivabilité ponctuelle

D’un point de vue heuristique, une fonction est dé-
rivable en x si et seulement si son graphe est lisse
en ce point, i.e. approchable par une droite qu'on
qualifiera de tangente.

La pente de cette tangente est intuitivement la li-
mite quand x tend vers xo de la pente de la corde
joignant les points d’abscisses x et x.

Définition 6.0. Dérivabilité en un point

Soit f: I — R une fonction définie sur un vrai inter-
valleIde R et xg €1.

= Dérivabilité ponctuelle : On dit que f est déri-
vable en xj lorsque le taux d’accroissement de f
en Xo, noté Ty, f et défini par

T f : I\ {xo} — R
_}f(x)—f(xo)

X — X0

admet une limite réelle quand x tend vers Xx.
Dans ce cas, cette limite est appelée nombre dé-
rivé de f en xj et on le note f”(xg).

= Dérivabilité globale : si f est dérivable en tout
Xo dans I, on note f':1— R, xo— f'(x0). Cette
fonction est appelée dérivée de f.

Soit xp € I en lequel f est dérivable; la tan-
gente au point My (xo, f (xo)) au graphe de
f est par définition la droite d’équation

y = f(xo) + [ (x0) (x — xo)

Définition 6.1. Tangente verticale

Onreprend les notations de la définition précédente. Lorsque

f(x) = f(x0)

+0o0
X— X0

X — X

ondit quele graphe de f pour tangente en x, la droite d’équa-
v > tion x = xp. Cette tangente est dite verticale.
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Nous allons illustrer cette définition au moyen de la fonction racine carrée. Soit xyp € R et x € R4 \{xp}.
Par opérations sur les limites, on a :

1
— sixg>0
\/} Vv X0 _ 1 2\/.76_() 0
*=Xo VI+VE 70| g sigg =0

La limite /x — v/ Xo est justifiée par la continuité de x — v/x en xg (cf. le chapitre AN 3). La fonc-
— X0

tion racine carrée n’'est pas dérivable en 0 (mais admet sa courbe représentative admet une tangente

verticale en ce point) et dérivable en tout point x de R’ avec une dérivée qui vaut ﬁ

Proposition 6.2. Dérivabilité et continuité

Soit f :1— R avec I vrai intervalle de R. Si f est dérivable en xy, alors f est continue en xy.

La réciproque est bien-str fausse, comme l'illustre la valeur absolue en 0 :

x—-0 X 1 sinon

x| —10] _ |x] _{—1 six<0

Définition 6.3. Dérivabilité a gauche, a droite

Soit f:1— IR, [ un vrai intervalle de R et xy un point intérieur de I. La fonction f est dite :

= dérivable a gauche au point xj si le taux d’accroissement de f en a admet une limite a gauche
en xp. Dans ce cas, cette limite est notée fg’, (xp), dérivée a gauche de f en x.

= dérivable a droite au point x si le taux d’accroissement de f en xy admet une limite a droite en
Xo. Dans ce cas, cette limite est notée f 6; (xo), dérivée a droite de f en xy.

La dérivabilité a gauche en un point xj s'interprete comme |’exis-
tence d'une demi-tangente a gauche au graphe de f en xp, la
droite d’équation

¥ = f(xo) +fg’,(x0)(x— Xo)

De méme a droite. !

Comme la continuité, la dérivabilité admet une caractérisation au moyen des limites latérales.

Proposition 6.4. Dérivabilité et dérivées latérales

Soit f: I — R avec I vrai intervalle de R et xp un point intérieur de I. La fonction f est dérivable
en X si et seulement si elle est dérivable a gauche et a droite en xj et fé(xo) =f ‘;(xo). En cas de
dérivabilité, on a f'(xo) = f(x0) = f}(x0).

1.2. Opérations sur fonctions dérivables

Comme dans le cas des limites et des fonctions continues, les théorémes opératoires nous offrent
des moyens tres efficaces de démontrer la dérivabilité et de calculer des dérivées. Les cas «rebels »
nécessiteront un retour a la définition via le taux d’accroissement.
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Proposition 6.5. Sommes, produits et quotients

Soit I un vrai intervallede R, u:1— R et v:1 — IR des fonctions dérivables en xg € I.

a. Les fonctions u + v et uv sont dérivables en xj avec

(u+ ) (x0) = ' (x0) + V' (x0) et (uv) (xg) = ulxo) V' (xo) + 1 (x0) v(xg)

b. Si v(xp) #0, alors — et — sont définies au voisinage de x; et sont dérivables en ce point avec
v v

(l)’(x )= - y’(XO) et (E)l(x = V(xo)u’(xo)— V/(xo)u(xo)
v) T () ) O V(X0)2

Ces calculs s’étendent par récurrence a un nombre fini quelconque de fonctions. Pour n € IN* et fj,
..., fn des fonctions dérivables de I dans R, la somme et le produit des f; sont dérivables et

(zf,-) S f (nﬂ) :z(f; m fj)
i=1 i=1 i=1 i=1 Jjell,n]\{i}

Les conditions énoncés dans cette proposition sont suffisantes mais nullement nécessaires : par
exemple la somme de deux fonctions non dérivables peut étre dérivable, la fonction f : x — |x]| est
non dérivable en 0, son opposé non plus mais la somme des deux est nulle donc dérivable.

Proposition 6.6. Composées

Soit I et ] deux vrais intervallesde R, xo € I, u: I — R et v : ] — R des fonctions respectivement
dérivables en xj et u(xp) telles que u(I) cJ. La fonction v o u est dérivable en x et

(vou) (xg) = u'(x0) x V' (u(xp))

Nous citerons deux cas tres usuels : si u > 0, alors u® est dérivable Va € R et (u®)' = au/u®"L. En effet,
u®*=vououv:x— x% définie sur R7. Si u est une fonction dérivable ne s’annulant pas, alors In|u|
est dérivable et

!/
(Injul)' = Ll (expression appelée dérivée logarithmique de u)
u

Le dernier résultat « opératoire » porte sur la réciproque d'une bijection dérivable.

Proposition 6.7. Dérivabilité d’'une fonction réciproque’
Soit f:1— J une bijection entre deux vrais intervalles de IR, dérivable sur I. Soit y € J et x = f~1(y).

1
a. f~!est dérivable en y si et seulement si f'(f~!(y)) # 0 et dans ce cas (f ') () = ———-

()

b. Lorsque f'(f~'(y)) =0, le graphe de la fonction f~! admet en y une tangente verticale.

3. On notera que si la continuité de la fonction réciproque f~! est acquise, sa dérivabilité n’est pas automatique et nécessite une petite discussion.
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B Cette proposition est une évidence géométrique : I'image d'une droite non
I / , horizontale (resp. horizontale) de pente p par la réflexion d’axe A, premiere
A

s

bissectrice du repere, est une droite de pente % (resp. verticale). En effet,

s

s
s

Bl
- r—)yYa  XB—X 1 XA = VA, YA =X
'/., p:J/B YA of BT YN _ B A:_Car{A YA, Yar = XA

‘ A XB — XA Xgr—Xpn  YB—YA P Xp' = ¥B, YB' = XB

On conclut en remarquant que les tangentes a la courbe de f en x (de pente f'(x)) et ala courbe de
f~!en f(x) sont symétriques par rapport a A.

A f A

Tlustrons ce théoréme avec la fonction racine carrée, bijection réciproque de f : x — x> définie de R,
dans R+. Pour y e Ry, f/(f71()) = 2/7. Ainsi, f~! est non dérivable en 0 (sa courbe admettant en ce
point une tangente verticale) et dérivable en tout y > 0 avec

BN
(f )(y)—zﬁ

1.3. Quelques études de dérivabilité

Voici quelques pistes pour étudier la dérivabilité d'une fonction en un point xp.

Prouver la dérivabilité d’'une fonction en un point

Pour étudier la dérivabilité d'une fonction f en un point xy :

= On commence par étudier si un théoréme sur les opérations est applicable.

fxo+uw) = f(xo)

= Si ce n'est pas le cas, on pose x = xy + u et on étudie la FI pour u — 0.
u

Ce changement de variable ramene le probléme a une limite en zéro, ce qui est plus clair.

Application des théorémes opératoires.

Soit, pour n € IN*, la fonction définie sur R par

LLG ¥ HX6 6
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_r
(r2+1)"

f:t—

est dérivable sur R en tant que produit des fonctions dérivables ¢ — ret t — (12 +1)" " avec

)_,H _1+a-2mf?

VieR, /() =1x(2+1) "+tx—nx2tx(1+1?
f ( ) ( (t2+1)n+1

La fonction ¢ — (% + 1)_n est dérivable en tant que composées des fonctions dérivables ¢ — 1> + 1 et
x—x"

Produit d'une fonction dérivable par une fonction non dérivable.

Considérons a présent la fonction g : x — (x2 - 1) |x—1] définie sur R. Comme x — |x—1| est dérivable
en tout point de R\ {1} et x — x? — 1 I'est partout, on peut appliquer le théoréme sur les produit en
tout point de R \ {1} : g est dérivable en tout point de R\ {1}. Il reste a étudier la dérivabilité de g au
point 1. Pour cela, on effectue le changement de variable x = 1 + u, on obtient :

gll+u)—g1)

=(u+2)|ul —0
u u—0

La fonction g est donc dérivable en 0 et g’(0) = 0.

Ftude d’un raccord.

A y

Considérons maintenant, pour un

réel A, la fonction h) définie sur R / _\ /
par ‘

4_xz \
pour x<1
By (x) := 2 A

1
—+—pourx>1
x 2

Il s’agit d’étudier la fonction obtenue en raccordant deux expressions analytiques eau point 1. Il est
clair, par opérations sur les fonctions dérivables, que la fonction /) est dérivable en tout point distinct
delet

—2x six<l1

h) (x) = 1
—— six>1
X

La continuité en 1 étant une condition nécessaire de dérivabilité en ce point, on en déduit que le seul
cas a considérer est celui ou A =1 (seule valeur telle que /) admette en 1 des limites latérales égales).

Comme Vx >1, hy(x) = % + %, h; est dérivable a droite en 1 avec h'ld(l) = —1—12 =-1.

Comme h;(1) = %, onaVx<l, hx) = 4_2x2, h; est dérivable a gauche en 1 avec h’lg(l) = % =-1.

Puisque k(1) = k] ;(1), hy est dérivable en 1.

LLG ¥ HX6 7
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Ftude de la dérivabilité d’'un prolongement par continuité.

) \ Soit f et gles fonctions définies sur R*

par
(5) oy
f(x) := xsin|[—| et g(x):= x“sin|—
/Dl : i
\/UﬂMﬁﬂV v ) "~ Comme f(x) = O(x) et g(x) = O(x?)
en 0, ces fonctions sont prolongeables

par continuité en 0 en posant f(0) :=0
et g(0):=0.

Ftudions leur dérivabilité en 0.

@

g(x)
X t>

g0 o,

On sait que x — = O(x) en 0 donc =+

n'admet pas de limite en 0 (cf. AN 3) e

x—0

Ainsi f n'est pas dérivable en 0 et g est dérivable en ce point avec g’(0) = 0. Comme on I'observe sur
les figures ci-dessus, I'amplitude x — x? «force » la courbe de g a étre lisse en 0 (cf. 'entonnoir bleu).
L'amplitude x — x est moins contraignante au voisinage de 0 (on peut facilement démontrer que cette
fonction admet des tangentes de pentes arbitrairement grandes au voisinage de 0).

Nous verrons un peu plus loin qu'il est possible d’étudier la dérivabilité d’'un prolongement par conti-
nuité en appliquant le théoreme de la limite de la dérivée.

On traitera avec profit le test (£ 6.1 ).

2. Propriétés globales des fonctions dérivables

Les théorémes de Rolle et des accroissements finis sont les principaux outils pour relier les propriétés
d’une fonction dérivable a celles de sa dérivée.

2.1. Les théorémes de Rolle et des accroissements finis

Le lecteur est renvoyé au chapitre AN 3, oi1 les ; Maximum global

!

notions d’extremum local et global ont été dé- v )

) Maximum local
finies. /

Il est géométriquement clair qu'une fonction v
de R dans R dérivable est de dérivée nulle en /

tout point ou elle admet un extremum local. S/

A

Ce résultat se généralise a des fonctions f:1— Minimum local -

R dérivable ou I est un intervalle et des points

Proposition 6.8. Condition nécésssaire d’extremum en un point intérieur

Soit ¢ un point intérieur d'un vrai intervalle I et f : 1 — R dérivable en c. Si f admet en ¢ un extre-
mum local, alors f’(c) =0.

LLG ¥ HX6 8
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Les hypothéses de ce théoreme sont mini-
males.

La fonction f : [0,1] — R ci-contre vérifie

toutes les hypotheses sauf la dérivabilité en %

De méme, la fonction g : [0,1] — R vérifie
toutes les hypothéses sauf qu’elle atteint un
maximum et un minimum locauxen 1 et 0, qui
ne sont pas intérieurs a [0, 1].

Dans les deux cas, les dérivées f’ et g’ ne s’annule pas la ot elles sont définies.

Le théoréme suivant date de la fin du XVII-éme siecle. Il a été énoncé par Michel Rolle en 1690 sous
la forme suivante : entre deux racines d’une équation est comprise une racine de I'équation dérivée®.

Théoreme 6.9. Théoréeme de Rolle

Soita< bet f:[a,b] — R continue sur [a, b] et dérivable sur ]a, b| telle que f(a) = f(b).

Il existe c €]a, b tel que f’(c) =0.

On peut donner deux interprétations du théoreme de Rolle :

1 = Géométrique: f admet un extremum local en un point inté-
rieur a [a, b]. 0
= Cinématique: f(t) représente I'altitude al'instant ¢ d'un mo-
bile se déplacant verticalement sur un axe; f(a) = f(b) signi- f (ﬁ)
— fie que le mobile revient a la méme altitude en t = b qu'en [ ()
a b t = a, celaimpose que sa vitesse s’annule entre a et b.
Les fonctions f (cf. les figures illustrant le T
théoréme de Rolle ci-dessus), & et k (cf. ci- y=k(x)
contre) illustrent la minimalité des hypothéses
du théoreme des accroissements finis : f véri-
fie tout sauf la dérivabilité en %, idem pour h
sauf h(0) = k(1) et idem pour k sauf la conti- y = h(x)
nuité en 0. —
0 0 1

Théoreéme 6.10. Théoréme des accroissements finis

Soita< bet f:[a, bl — R continue sur [a, b] et dérivable sur ]a, b|.
Il existe c €]a, b[ tel que f(b) — f(a) = (b—a) f'(c).

4. En langage moderne : entre deux solutions de f(x) = 0, on trouve une solution de f’(x) = 0.

LLG ¥ HX6
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On peut reconduire les deux interprétations précédentes :

= Géométrique : il existe une tangente au graphe de f parallele a
la corde joignant les extrémités du graphe de f.

= Cinématique: il existe un instant ¢ ou la vitesse instantanée est

. e égale a la vitesse moyenne entre les instants a et b.
a b

De f' en f et inversement

= On peut transformer des hypotheéses sur f’ en conclusion sur f de deux maniéres :
X
o si f’ est continue, on peut utiliser I'intégrale et f(x) = f(a) + f f(ndt.
a

T sinon, seul le théoréme des accroissements finis est applicable.

= Pour transformer des hypothéses sur f en conclusion sur f’, on revient au taux d’accroissement.

Théoreme 6.11. Théoreme de la limite de la dérivée

Soit I un vrai intervalle de R. Pour a €I et f:1 — R continue sur I, dérivable sur I\ {a} telle que
f’(t)t—>€€IR,ona
—a

f@—-f(a ¢ En particulier, si £ € R, alors f dérivable en a
I—a t—a et f'(a) = L.

Ce résultat est géométriquement tres intuitif : le graphe de f
« tombe » sur le point (a, f(a)) avec une pente égale a ¢ (cf.
I’exemple ci-contre).

On peut méme l'affiner en ne supposant la continuité de f que
surI\{a} : on prouve’alors que f est prolongeable par continuité
en a puis dérivable en a avec f'(a) = £.

Considérons la fonction ¢ : x — exp (—%) définie sur R*. Elle est continue sur R* et prolongeable par
continuité en 0 par 0 puisque ¢ (x) — 0. La fonction ¢ est dérivable sur R* et
X—

¢'(x) = iexp Lo
x3 x?) x—0

Cette limite est justifiée par la croissance comparée suivante X° < eX” et une composition a droite
o0

par x — |—)16| On déduit du théoréme de la limite de la dérivée que ¢ est dérivable en 0 avec ¢'(0) = 0.

On pourra aborder le test (£ 6.2).

4. Le programme se limite a I'intégrale des fonctions continues par morceaux.
5. Par des outils qui ne sont pas au programme.
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2.2. Linégalité des accroissements finis

Le théoréme des accroissements finis a pour corollaire immédiat qu'une fonction dérivable a dérivée

bornée sur un intervalle est lipschitzienne®.

Proposition 6.12. Inégalité des accroissements finis (/6.3 )

Soit [ un vrai intervalle de R, k€ R4 et f: 1 — R dérivable.
a. S’il existe (m,M) € R? tels que m < f' < M alors

Y(a,b) € I? tel quea< b,onam(b—a) < f(b)- f(a) < Mb-a)
b. En particulier, s'il existe k € R tel que |f'| < k, alors f est k-lipschitzienne sur, i.e.

V(a,b) e, | f(a)- f(b)| < kla— bl

Comme |sin’| < 1, la fonction sinus est 1-lipschitzienne sur R. Nous I'avons déja vu dans AN 3, I'inter-
prétation géométrique est claire : pour tout xy € I, le graphe de f est contenu dans le secteur angulaire
d’inéquation |y—f(x0) | < klx— xpl.

La condition

A

y=yo—-k(x—x0) | | > . ly—y0| < klx—xol

< Y= Yo+ k(x—xp) ol yp := f(xp), équivaut a

Yo—k(x—xp) <y et

y< yo+k(x—xp) six>xg
Yo+ k(x—x0) <y et

Y<Yo—k(x—x9) six<xp

AN

b b b
6. En supposant f’ continue, on peut déduire de m < f'(f) < M pour tout ¢ dans [a, bl et a< b quef mdt < f flnde < f Mdr
a a a

m(b-a) fb)-f(@ M(b—-a)
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Fonctions contractantes et suites récurrentes

Linégalité des accroissements finis est un outil trés efficace pour étudier la convergence de suites
récurrentes
VnelN, up1 = f(uy)

lorsque 1y appartient a un intervalle [, b] stable par f sur lequel f est dérivable et vérifie | f'| <A
ou A € [0, 1]. Une telle fonction est dite contractante.

Sous ces hypotheses, il est classique que f admet un point fixe sur [a, b] (cf. le chapitre AN 3). Par
I'inégalité des accroissements finis, puisque (u,) ;e est a valeurs dans [a, b], on a pour n € IN

| fun) = FO] < Mup—0 dott | e —0| < Auy— £
Puis, par une récurrence facile, Vne N , |u, — €] < A"|ug—€|. Comme A € [0,1[,ona A" —— 0 et

n—+oo
donc u,,

0 par le théoréeme d’encadrement.

n—-+oo
Ce résultat est particulierement intéressant dans le cas ou
f est décroissante, pour lequel I’étude de la suite peut étre
délicate. Par exemple, considérons uj € R et

VnelN, u,,1 =cosuy,

Ona u; € [-1,1] puis up € [0,1] car [-1,1] [, ]. Comme
[0,1] est stable par cos, on a Vn > 2, u, € [0,1]. Puisque
cos' = —sin, |cos’| est majorée par A :=sinl sur [0,1]. Le
réel A appartenant a [0, 1], le cosinus est contractant sur
[0,1] et u, ¢, ou £ est 'unique point fixe de cos.

n—+oo

2.3. Sens de variation et dérivée

Nous cloturons ce paragraphe par 'application la plus commune de la dérivation : I’étude des varia-
tions.

Proposition 6.13. Dérivée et sens de variation (/6.4 )

Soit I un vrai intervalle et f : I — IR dérivable.
a. Lafonction f est croissante (resp. décroissante) si et seulement si ' > 0 (resp. <);

b. La fonction f est strictement croissante (resp. décroissante) si et seulement si f' > 0 (resp. <)
et f' ne s'annule sur aucun intervalle ouvert non vide contenu dans I.

c. Lafonction f est constante si et seulement si ' = 0.

! Lensemble de départ doit étre un intervalle :

f' =0 2% f estconstante

Par exemple, la fonction définie sur R* par

X

X——

| x|

est de dérivée nulle sur R*, mais non constante.

LLG € HX6 12
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Pour justifier la stricte monotonie sur un intervalle d'une fonction f dérivable, on étudie son signe et
on vérifie que '’ensemble des points ou sa dérivée s’annule ne contient aucun vrai intervalle.

3. Fonctions circulaires réciproques

Dans ce paragraphe, nous allons définir trois nouvelles fonctions trigonométriques, bijections réci-
proques de cos, sin et tan sur des intervalles bien choisis. Ce seral’'occasion de mettre en applications
de nombreux théorémes établis dans les chapitres AN 3, AN 4 et AN 5.

Définition 6.14. Arcsinus (7 6.5 ) !

Larcsinus est la bijection réciproque de

5=

X — Sinx Arcsin x

On a arcsin(0) = 0, arcsin(+1) = +7, arcsin(+1/v/2) = 7 arcsin(+v/3/2) = +3 etarcsin(+1/2) = £§-
Ces résultats se retrouvent sur cercle trigonométrique. L'arcsinus du réel x € [-1, 1] est I'unique élé-
P11

ment de [ - 3,7 ] dont le sinus vaut x.

{ t

On déduit du tableau de variation et du graphe du
arcsin sinus ceux de l'arcsinus :

— X -1 1

STE

arcsin x

Proposition 6.15. Propriétés de P'arcsinus (7 6.6)

a. La fonction arcsin est impaire et continue sur [—1,1] et Vx € [-1,1], cos(arcsinx) = V1 — x2.
1

V1-—x2

c. L'arcsinus n’est pas dérivable en +1, sa courbe graphe admet en +1 une tangente verticale.

b. Larcsinus est dérivable sur]—1,1[ avec, Vx €] — 1, 1], arcsin’ x =

Afin d'illustrer ces différentes propriétés, étudions la fonction f : x — arcsin(sinx). Comme sin est
a valeurs dans I'’ensemble de définition [—1, 1] de I'arcsinus, f est définie sur R. Comme sin et arcsin
sont impaire, leur composée f I'est également. Comme sin est 2n-périodique, f I'est également. Ainsi,
nous allons limiter I'étude de f a [0,7]. Pour x € [0,3], f(x) = x par définition de I'arcsinus. Pour
x€[%,m],onan-xe€[0,5]etsinx=sin(m—x) d'olt f(x) = f(n—x) = n—x. On en déduit le tracé de f
sur [0, 7], que I'on compléte par une symétrie par rapport a I’origine pour obtenir le tracé sur [—m, 1],
on translate alors une infinité de fois ce motif pour construire toute la courbe :

LLG € HX6 13
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Définition 6.16. Fonction arccosinus (/6.7 )

L'arccosinus est la bijection réciproque de la fonction définie par

(0,7 — [1,1]

X = COSX

On a arccos(l) =0et

1) = Iy_n= lj_m
arccos(—1) =m, arccos(z) =3 arccos(ﬁ) =1
_n V3 _ 1 1\ _ 2n
AICCOS X arccos(0) = %, arccos(—2 ) = &,arccos(—3) = 3¢
_1)1_3n _\/— _ 5n
. arccos( _\/Z) = ,arccos( 5 ) =%

|

On retrouve les valeurs particulieres de ’arccosinus sur le cercle trigonométrique. L'arccosinus de
x € [-1,1] est 'unique réel appartenant a I'intervalle [0, t] dont le cosinus vaut x.

Les graphes de l'arccosinus sur [-1,1] et du cosi- /
nus sur [0, 7] sont symétriques par rapport a la pre- 7
miere bissectrice. On déduit des variations du cosi- arccos
nus celles de I'arccosinus. !

X -1 1
T g -
arccos x B 1 arccos
| -
Cos { N

Proposition 6.17. Propriétés de P'arccosinus (7 6.8 )

a. La fonction arccos est continue sur [-1,1] et Vx € [-1, 1], sin(arccosx) = V1 — x2.
1

V1-x?

c. Larccosinus n'est pas dérivable en +1, son graphe admet en ces points une tangente verticale.

b. Larccosinus est dérivable sur ] —1,1[ avec Vx €] — 1, 1], arccos’' x = —

. 514
d. Pour tout réel x € [-1,1], arccos x + arcsin x = E-

LLG € HX6 14
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; b ;
Définition 6.18. Fonction arctangente (7 6.9 ) | |
L'Arctangente, notée arctan, est la bijection réciproque de la fonc- | tan |
tion _— ; |
55— )
22 ! !
X — tanx 1 l
x -3 0 3 La fonction tangente a déja été 3 3
) N étudiée en détail dans le chapitre ! !
tan’ x AN 4. 3 3
+ A1 I e 1 1
tan x 0" > Elle réalise une bijection de l'in- ! !
~ | |
oo tervalle | - 7, 7 [ sur R. | |
p . .
Les valeurs remarquables de ’arctangente se lisent sur le cercle trigonomé-
. RRT) y 2 ) . z 3 nn
trique : I'arctangente d’un réel x est I'unique réel appartenant a | — 59
dont la tangente vaut x. On a
¢ 1 ¢ L
arctan(x1) = +—, arctan(0) =0, arctan|+t—|=%—, arctan(i\/g) =+—
Arctan x 4 3 6 3
1S pls
| A 7’ x _E E
! tan +00
| arctan x /
| g —00

En particulier, arctan x

I
xX—+o0 2

arctan

Les formules de trigonométrie directe (addition, duplication, etc.) admettent des analogues en trigo-
nométrie réciproque. Considérons par exemple, deux réels positifs a et b. Puisque arctan a et arctan b
appartiennent a [0, %[, ona

T T
3 < arctana—arctanb < >

Par bijectivité de arctan: R — | - 7, 7, il existe un unique réel c tel que arctan a — arctan b = arctanc.
On peut expliciter ¢ au moyen de la formule d’addition de la tangente :
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tanarctan a —tanarctan b _a- b
1+ (tanarctan a)(tanarctanb) 1+ ab

¢ = tan (arctana — arctan b) =

Ainsi, nous venons d’établir la formule suivante :
a->b

V(a,b) e Ri , arctana — arctan b = arctan
1+ab

On pourra traiter le test (£ 6.10).

La fonction arctangente permet d’expliciter un argument d'un nombre complexe qui n’est pas imagi-
naire pur.

Proposition 6.19. Argument

our (x,y) e R} xR, arg(x+iy) = arctan (Z) [27].
X
. z=x+1y
Lorsque x <0, onpose —z=—-x—1iy=1/x*>+ yzele. Comme —x > 0, on peut
choisir 6 = arctan = = arctan 2, d'ott can6= Y

. . 0 *
z=—\/x2+y2e!® = \/x2+ y2e!®*M etdonc arg(x+iy) = n+arctan(z) [27] 0 —
x

Cherchons a simplifier a := arctan?2 + arctan3. Par la proposition précédente et les propriétés des
arguments, on a

a = arg(1 +2i) +arg(l +37) [2n] = arg((1 +20)(1+3i)) [2n] = arg(-5 + 5i) [2n] = arg(—1+ i) [27]
= ?%[ [27]

Comme 0 < arctan?2 < g et0<arctan3 < g, ona0<a<m. Onen déduit que a = %“-

On peut aussi appliquer la formule d’addition de la tangente. Comme arctanl < arctan2 <

5 et
2
arctanl < arctan3 < g, ona g < o< T, ainsi

tanarctan2 + tanarctan3 5
tana =

3n
=—=-1=tan—
1 — (tanarctan?2)(tanarctan3) -5 4
n
2

<a <, onen déduit que a = Sus

On en déduit que a = %’T [27t]. Comme 7}

Proposition 6.20. Propriétés de 'arctangente (7 6.10)

a. La fonction arctan est impaire et dérivable sur R avec, Vx € R, arctan’ x = oh
+x

1 si x>0

1 7T
b. Pour tout réel x non nul, arctan x + arctan — = signe(x) - — ou signe(x) = .
X 2 -1 six<O0

Revenons au calcul de «, entrepris de deux fagons ci-dessus. Cette proposition nous ouvre une troi-
siéme voie :
1

1 =n 5 W T M T
a = arctan3 —arctan - + — = arctan —— + — = arctanl+ - = —+ - = —
2 2 1+% 2 2 4 2

par la formule « d’addition » démontrée ci-dessus.
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4. Dérivées successives

Sous réserve d’existence, on peut itérer la dérivation pour définir la dérivée de la dérivée, etc.

Définition 6.21. Dérivées successives

Soit [ un vrai intervalle, f:1— R.
= On définit par récurrence les dérivées successives de f (sous réserve d’existence) :
o Onnote f© := f.
o Onnote, pour n € IN* et sous réserve d’existence, f"” := (f("_”)/ (dérivée n-ieme de f).
= Classe d'une fonction.
o La fonction f est dite de classe € si elle est continue sur I.
o Soit n € IN*. La fonction f est dite de classe € si elle est dérivable n fois et si £ est continue.
o La fonction f est dite de classe € si elle est indéfiniment dérivable sur 1.
Pour 1 € NU{oo], on note { ¢"(I,R) 'ensemble des fonctions de classe ¢ sur I a valeurs dans R
21, R) 'ensemble des fonctions 7 fois dérivables sur I a valeurs dans R
On emploie parfois I'expression régularité d’'une fonction pour désigner sa classe. On a bien sfir :

EPLR)c---cE€"ILR) c "L, R) < 2"L,R) c € ' ,R) ¢ --- c € (,R) « €°(4, R)

On démontre facilement par récurrence les résultats suivants :

——  Formulaire

B4 514
= Pour tout entier naturel z et tout réel x, cos™ (x) =cos (x + ng) , sin (x) =sin (x + ng)

= P tout N et f: l VxeR*, F0 _m
= PourtoutnelN, e f.x-—»x, xeR*, f'(x) = T
m! .
ﬁx’”_” sim>n
m-—n)!
= Pour tout (1, m) € IN2, et f:x—x" VxeR, f(")(x) =
0 sim<n

Proposition 6.22. Opérations (#6.11)

Soit n € N, I et ] deux vrais intervallesde R, #:I— R et v:I1— R de classe €.
a. Les fonctions u + v et uv sont de classe " et vérifient

n n _
w+)™ =u®+0" et W)™ =Y (k)u(k)v(” ©
k=0

b. Si w:J — R est de classe " telle que u(I) cJ, alors wo u est de classe €.

c. Sin>1etu >0, uréalise une bijection de I sur u(I) et u~ ! est de classe €.
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On adapte bien-sir le ¢) de cette proposition au cas ot ' < 0.

Lexpression sommatoire de (uv)"™ est connue sous le nom de « formule de Leibniz». Considérons
par exemple la fonction f : x — x?e®* définie sur IR, ol a est fixé dans R*. Elle est de classe € en
tant que produit des deux fonctions indéfiniment dérivables u : x — x? et v : x — €**. On déduit de la
formule de Leibniz que

n
vnelN, VxeR, f™(x) = Z (Z) u® ()"0 (x) = (a”x2 +nad" 'x+nn- l)a"_z)eo‘x
k=0

On pourra conclure cette section par le test (£ 6.12).
5. Extension aux fonctions a valeurs complexes

On étend la notion de dérivabilité aux fonctions de la variable réelle a valeurs complexes en reprenant
mot pour mot la définition.

Comme nous 'avons remarqué dans le cahpitre AN 3, une fonction f : \ plwt
I — C (ou I est un intervalle de R) s’'interpréete comme une courbe du
plan (un point du plan mobile d’affixe f(#) a I'instant ). ot

En cas de dérivabilité, f’(r) est I'affixe du vecteur vitesse a 'instant ¢.

Par exemple, f : R — ¢! (pour w réel) correspond a un mouvement
circulaire a vitesse angulaire constante w dans le sens trigonométrique.

Comme pour la continuité, la dérivabilité se caractérise simplement au moyen des parties réelles et
imaginaires.
Proposition 6.23. Dérivabilité ponctuelle

Soit I un vrai intervalle de R, #p eI et f : 1 — C. La fonction f est dérivable en f; si et seulement si
Re(f) et Im(f) sont dérivables en t; et, dans ce cas, f'(f) = Re(f)'(to) + i Im(f)'(tp).

Les résultats sur les opérations s’étendent sans peine a ce cadre. Pour rester dans le cadre de ce cha-
pitre d’'une variable réelle, nous limiterons le théoréeme de composition au cas suivant.

Proposition 6.24. Une composée

Pour ¢ : I — C dérivable, exp o} est dérivable et (expod)’ = ¢'(expod).

En particulier, pour tout ve Cet f: t— e"?, f est dérivable et f'(r) = ve'’.

Le théoreme de Rolle n'est plus valable sur C : contrairement a la dimension un, il est possible en
dimension deux de partir d'un point et d’y revenir sans que la vitesse ne s’annule. Par exemple, pour le
mouvement circulaire f: t— e'f, on a f(0) = f(2n) mais f'(¢) = ie'’ # 0 pour tout réel . En revanche,
I'inégalité des accroissements reste valable dans ce cadre.
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On généralise les dérivées successives et les classes de fonctions a ce cadre. Par exemple, pour f fonc-
tion » fois dérivable sur I, on a

Re(f") = Re(H™ et Im(f™) = Im(f)™

On peut en déduire les dérivées successives de la fonction g : x — cos(x)e* définie sur R en remar-
quant que g :=Re f ol f: t — e'*e*. Comme f(t) = e!'** pour tout n€ N, on a

V(n,x) e NxR, £ (1) = A+i)"e! D" = V2" etel(+ ) ot g™ (1) = Re(f™ (1)) = \/Enetcos(m %)
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6. Tests

Laurent Kaczmarek

6.1.®9
Etudier la dérivabilité de f: x — x|x—1].

6.2. ®O

Soitae R, h>0et f:[a a+ h] — R dérivable sur |a, a + h[, continue sur [a, a + h]. Montrer que

30€]0,1[, f(a+h) = f(a)+ hf' (a+06h). Calculer 0 dans le cas d'un trinéme du second degré.

6.3.®"9

Montrer que sin (In(z + 1)) — sin (In(n)) 0.

n—+oo

64.®9
x+1

Soit f: x— — - \/ |x2 - 1|. Domaine de définition, variations puis graphe de f.

6.5.®9D
Calculer arcsinsina pour a = 37“, —%’T et 197"-
6.6. ®9

Soit x € [-1, 1]. Résoudre I'’équation sinf = x d’inconnue réelle 6.

6.7.®9D
Calculer arcsin (cosa) lorsque o = 37”, —%” puis 197“-
6.8.®9

Simplifier, pour tout x € [-1, 1], sin (2arccos x) et sin (4 arccos x).

6.9.®9D
Calculer arctan(tana) lorsque o = 337“, —%" puis 197”-
6.10. ® D

1 1 7
Prouver la formule arctan 3 + arctan = = arctan 5

6.11. ®

1 a b

a. Déterminer deux réels a et b tels que Vx # +1, = .
I1-x> 1+x 1-x

b. Calculer la dérivée n-iéme sur R \ {+1} de la fonction x — f(x) =

1-x2

6.12. ®'O

n
En dérivant de deux facons différentes x — x(1 + x)”, montrer que Z (k+1) (n) =2""Yn+2).

k=0 k

LLG ¥ HX6
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7. Solutions des tests

6.1.88 O 6.4.88 O

= Lafonction f est dérivable en tout point xg €
R\ {1} en tant que produit de fonctions déri-
vables en xg.

= Posons x =1+ u. Pour tout u #0,on a

o)) = fA+u)-fQ) _ 1+ w)|ul
u u
= |u| + signe(u)
Ainsi 1o (f)(w) 1 et to(f)(w) -1.

u—0+ u—0—
La fonction f admet des dérivées a droite et

a gauche en 0 qui sont distinctes : elle n’est
pas dérivable en 0.

A

6.2.88 O

= Les hypothéses sont réunies pour appliquer
le théoreme des accroissements finis a f sur
[a,a+ h] : il existe c €]a,a+ h[ tel que f(a+
h)—f(a)=hf'(c). Enposant 0 := (c—a)/h, on
abien f(a+h) = f(a)+hf'(a+0h) etB€]0,1].

= Apres tout calcul, on trouve 0 = 1/2.

6.3.88 O

Notons f = sinoln. Comme sin’ = cos est bor-
née par 1, sin est 1-lipschitzienne sur R. Ainsi,
pour tout n € IN*,

1
|f(n+1) - f(n) gln(l + Z)
et, d’apres le théoreme d’encadrement,

LLG ¥ HX6

a. La fonction f est clairement définie sur R.
Ona

XT“—vl—xZ si—l<x<1
f(x): x+1 x2_1

2 SInorn.

La fonction f est dérivable sur R\ {1} et

+ = si—l1<x<1
—X
X

xX4—

]

N|—= N|—

six<—-loux>1.

f'x) :{

—

Puisque la dérivée tend vers l'infini aux
points *1 la courbe ¢ possede des tan-
gentes verticales en ces deux points. Etu-
dions le signe de f’.

Soit x < —1. Alors f’(x) est positive comme
somme de deux termes positifs.

Soit —1 < x < 0; (*) est justifiée par le fait
que deux réels positifs sont rangés dans le
meéme ordre que leurs carrés.

1 X
20 =->-

2 V1=2x2
= V1-x2>-2x

&y (ﬂ)z > (—2x)

(=>1—x2>4x2

= x’< 5

— x| <V0.2=0.45
Soit 0 < x < 1. Alors f'(x) est positive
comme somme de deux termes positifs.

Soit x > 1; (*) est justifiée par le fait que
deux réels positifs sont rangés dans le méme
ordre que leurs carrés.
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X
x2-1

= Vx2-1>2x
* 2
& (\/x2—1) > (2x)

(=>x2—1>4x2

1
fo20 = 2>

<=>—1>3x2

Cette derniere inégalité n’est jamais vraie.

Conclusion : la fonction f est croissante
sur chacun des intervalles | — oco,—1] et
[—v/0.2,1]. Elle est décroissante sur chacun
des intervalles [-1,—1/0.2] et [1,00][.

b. Voici le graphe de f :

6.5.88 O

= Puisque 3n/7 € [-m/2, /2], 0on a
arcsin(sin(3n/7)) =3n/7

= Puisque sin(—-2m/3) = sin(—m/3) et que
—n/3 € [-m/2,7/2], on a aussi

arcsin(sin(—2n/3)) = —n/3

= Puisque sin(191/7) = sin(5n/7) et 5n/7 €
[-m/2,7t/2],0n a

arcsin(sin(19n/7)) =5n/7

6.6.88 O
On a sin(0) = x si et seulement si

sin(0) = sin(arcsin(x))
ainsi:
dkeZ,

arcsin(x) + 2km

sin(@) = x <—
0= ou

—arcsin(x) + k+1)m

LLG ¥ HX6
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6.7.88 O

=> Puisque 3n/7 € [0, 7], on a

arccos(cos(3n/7)) =3n/7

=> Puisque cos(—2m/3) = cos(2n/3) et 21/3 €
[0, 7], on peut en conclure que

arccos(cos(—2m/3)) =2n/3

= Puisque cos(19n/7) = cos(5n/7) et 5n/7 €
[0,7t],on a

arccos(cos(19n/7)) =5mn/7

6.8.88 O

Soit x € [-1,1]. Posons 6 = arccos(x). On a

sin(20) = 2sin(0) cos(0) =2xV' 1 — x2
De plus,

cos(20) =2cos’ (@) —1=2x* -1

donc
sin(40) = 2sin(20) cos(20)
=4xV1—x? (2x2 -1)
Commentaire.

Puisque cos(arccosx) = x et sin(arccosx) =
V1-x2, lidée directrice de ce genre
d’exemple est de tout exprimer en fonc-
tion de cos et sin.

6.9.88 O

=> Puisque 33n/7 = 5n —2n/7 et —2n/7 €] —
1t/2,7t/2[,on a

arctan(tan(33n/7)) = -2n/7

= Puisque —-8n/3 = -3m+ n/3 et n/3 €] -
n/2,m/2[,ona

arctan(tan(—8n/3)) = mn/3
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= Puisque 19n/7 = 3n —2n/7 et —2n/7 €] —
nt/2,t/2[,ona

arctan(tan(19n/7)) = -2n/7

6.10.88 O

Posons a = arctan(1/2) + arctan(1/5). La fonc-
tion arctangente est strictement croissante
sur R. Comme 1/2 < 1,1/5 < 1 et 0 =
arctan(0), /4 = arctan(1) on en déduit que 0 <
a < 2m/4 = n/2. D’apres la formule d’addition
de la tangente,

1/2+1/5 7

tan(a) =
1-1/10 9

ainsi o = arctan(7/9).

6.11.88 O

a. On prouve aprés mise au méme dénomina-
teur et identification des coefficients que

1 1
a=—=,b=—-
2 2
b. On prouve par une récurrence sans diffi-
culté que
1
PX > —
& 1+x
est de classe " sur R\ {—1}, et que sur cet
ensemble,
(-1D"n!
g = ——
(1+x)"+
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On en déduit que la fonction

1
h:x———
1-x
est de classe € sur R\ {1}, et que sur cet
ensemble,
n!

(n) _
h(x) = a _x)n+1

La fonction f est donc de classe €"*° sur
R\ {1}, et sur cet ensemble,

n! (-D"n!
2(1—x)"1  2(1+x)nHl

fMw =

6.12.88 'O
D’apreés la formule du binéme,

x(1+x)"= Xn: (n)x’“rl
B k

k=0

donc

x1+x)" & [n k
i 1
p kgo(k)(lw )X

D’apres la formule de dérivation d'un produit,

xA+x)7 =(1+x0"+nx1+x)"1

=(1+x+nx)1+x)"1!

On évalue alors I'égalité en x = 1 pour conclure.
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