
Ù AN 7 Fonctions convexes

Nous poursuivons le cours d’analyse par la notion de convexité, qui a lentement
émergé dans l’histoire, jusqu’à devenir un outil puissant et très largement étudié
depuis le XXe siècle.

Dôme de San Carlo alle quattro fontane, Francesco Borromini
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L A première occurence historique de l’idée de convexité semble remonter à Archimède, vers
250 avant Jésus-Christ. Le savant de Syracuse a introduit cette notion afin de justifier le calcul
des ses approximations de π au moyen de polygones convexes.

Illustration du principe des approxima-
tions de π obtenues par Archimède (cf. la
gravure ci-contre datant du XVIe siècle) au
moyen d’un argument de convexité.

Le savant affirma qu’une courbe convexe
contenue à l’intérieur d’une autre courbe
convexe C a une longueur inférieure à
celle de C .

Après avoir été utilisées par quelques précurseurs tels que Hermite, Hölder et Stolz, les fonctions
convexes sont devenues l’objet d’une étude spécifique depuis les travaux de Jensen. Au cours du XXe

siècle, la notion de convexité a été progressivement généralisée à différents cadres : l’analyse fonc-
tionnelle géométrique, l’optimisation non-linéaire, l’analyse convexe, etc.

Hermite Hölder Jensen

Elle compte de nombreuses applications tant théoriques (le théorème de projection sur un convexe
fermé par exemple) que pratiques (citons les innombrables algorithmes d’optimisation très large-
ment utilisés de nos jours).

Le thème des fonctions convexes a été popularisé par le célèbre ouvrage Inequalities publié en 1934
par Hardy, Littlewood et Pólya, maintes fois réédité et qui reste une référence inégalée jusqu’à nos
jours.

Le succès de la notion de convexité tient à sa profonde interaction avec la géométrie et l’analyse, elle
a fourni de nombreuses inégalités en analyse (dans des cadres variés) et en géométrie. Elle admet de
nombreuses ramifications qui la rendent toujours d’actualité dans la recherche contemporaine.
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1. Introduction à la convexité

Dans ce qui suit on identifieR2 au plan et, pour tout couple de points (X,Y), on note [X,Y] le segment
joignant X et Y.

Définition 7.0. Parties convexes deR2

Soit A ⊂R2. On dit que A est convexe si

∀(X,Y) ∈ A2 , [X,Y] ⊂ A

La partie de gauche est convexe mais pas
celle de droite.

X

Y

X

Y

Définition 7.1. Fonction convexe

Soit I un intervalle deR. Une fonction f : I →R est dite convexe si l’ensemble suivant est convexe

epi f := {
(x, y) ∈ I×R ; y ⩾ f (x)

}
(épigraphe de f )

La fonction f est dite concave si son hypographe hyp f := {
(x, y) ∈ I×R ; y ⩽ f (x)

}
est convexe.

Dans les figures ci-dessous, les graphes, épigraphes et hypographes sont respectivement représentés
en rouge, bleu et vert.

Les fonctions représentées sont, de gauche à droite, ni convexe ni concave, convexe et concave.

Une fonction peut admettre des convexités différentes selon l’intervalle auquel on la restreint. Un
point où la fonction change de convexité est appelé point d’inflexion.

Convexe

Concave

Concave

Convexe
Point

d’inflexion

Point d’inflexion

Il n’est pas difficile de caractériser les fonctions convexes au moyen de leurs cordes.
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En effet, tout épigraphe E vérifie la propriété suivant

∀(x, y) ∈ E , ∀y ′ ∈R , y ′ ⩾ y =⇒ (x, y ′) ∈ E

De façon plus imagée : tout point « au-dessus » d’un point de E appartient
aussi à E. On en déduit qu’une fonction f : I →R est convexe si et seule-
ment si toutes ses cordes sont situées au-dessus de son graphe (pour mon-
trer que le segment « du haut » est inclus dans epi f , il suffit d’établir que
celui « du bas » est inclus dans epi f ). x1 x2

Nous allons commencer par trouver une formulation analytique équivalente à cette définition.

x yz

A
M

B

N

Soit f : I → R (avec I vrai intervalle), (x, y) ∈ I2 tels que x ⩽ y .
Fixons z dans [x, y]. Celui s’écrit z = λx + (1−λ)y où λ ∈ [0,1].

Il s’agit de comparer les points M
(
z, f (z)

)
du graphe de f et

N(z, w) de la corde [AB]. Celle-ci est d’équation Y = αX+β, d’où

w = αz +β = λ(αx +β)+ (1−λ)(αy +β) = λ f (x)+ (1−λ) f (y)

Ainsi, la convexité de f sur I est caractérisée par :

∀(x, y) ∈ I2 , ∀λ ∈ [0,1] , f
(
λx + (1−λ)y

)
⩽ λ f (x)+ (1−λ) f (y)

En explicitant l’équation de la corde [AB] sous la forme

Y = f (y)− f (x)

y −x︸ ︷︷ ︸
=pente de (AB)

× (X−x)︸ ︷︷ ︸
x =abscisse de A

+ f (x)︸ ︷︷ ︸
f(x)=ordonnée de A


Droite passant par A

(
x, f (x)

)
et de pente

f (y)− f (x)

y −x


on obtient une autre caractérisation de la convexité :

∀(x, y) ∈ I2 , ∀z ∈ [x, y] ,
f (y)− f (x)

y −x
(z −x)+ f (x) ⩾ f (z)

Définition 7.2. Fonction convexe

Soit I un vrai intervalle deR. Une fonction f : I →: R est dite :

convexe si ∀(x, y) ∈ I2 , ∀λ ∈ [0,1] , f
(
λx + (1−λ)y

)
⩽ λ f (x)+ (1−λ) f

(
y
)
, ce qui équivaut à

∀(x, y) ∈ I2 , ∀z ∈ [x, y] ,
f (y)− f (x)

y −x
(z −x)+ f (x) ⩾ f (z)

concave si ∀(x, y) ∈ I2 , ∀λ ∈ [0,1] , f
(
λx + (1−λ)y

)
⩾ λ f (x)+ (1−λ) f

(
y
)
, ce qui équivaut à

∀(x, y) ∈ I2 , ∀z ∈ [x, y] ,
f (y)− f (x)

y −x
(z −x)+ f (x) ⩽ f (z)

Il est clair que f est concave si et seulement si − f convexe.

On déduit directement de la définition géométrique qu’une fonction est concave et convexe si et seule-
ment si elle est affine.
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Continuons par quelques exemples et contre-exemples de fonctions convexes. Pour (a,b) ∈ R2, la
fonction f : x 7→ |ax +b| est convexe. En effet, pour (x, y) ∈R2 et λ ∈ [0,1]

f
(
λx + (1−λ)y

) = ∣∣aλx +a(1−λ)y +b
∣∣ = ∣∣λ(ax +b)+ (1−λ)(ay +b)

∣∣
⩽

∣∣λ(ax +b)
∣∣+ ∣∣(1−λ)(ay +b)

∣∣ = λ f (x)+ (1−λ) f (y) (par l’inégalité triangulaire)

1

−1

1

−1

1

2

−1

2

0

Considérons la fonction h : x 7→
∣∣∣∣x − 1

2

∣∣∣∣− ∣∣∣∣x + 1

2

∣∣∣∣ définie surR. On a

∀x ∈R , h(x) =


1 si x ⩽−1

2
−2x si

1

2
⩽ x ⩽

1

2
−1 si x ⩾

1

2

Puisque la corde joignant les points d’abscisses −1 et 1 n’est ni au-
dessus, ni au-dessous de la courbe, la fonction h n’est ni convexe,
ni concave 1.

La fonction g : x 7→ x2 est convexe car

∀(x, y) ∈R2 , ∀λ ∈ [0,1] , g
(
λx + (1−λ)y

)−λg (x)− (1−λ)g (y) = λ(1−λ)(x − y)2 ⩾ 0

La fonction x 7→ 1

x
est convexe surR∗+ car

∀(x, y) ∈ ]0,+∞[2 , ∀z ∈ [x, y] ,

1
y − 1

x

y −x
(z −x)+ 1

x
− 1

z
= (z −x)(y − z)

x y z
⩾ 0

Quelques propriétés s’imposent comme des évidences : si f est convexe, alors λ f est convexe si
λ ∈ R+, concave si λ ∈ R−. La somme de deux fonctions convexes est convexe. Le produit de deux
fonctions convexes ne l’est pas nécessairement : les fonctions f : x 7→ x et g : x 7→ x2 sont convexes sur
Rmais par leur produit.

Sous réserve d’existence, la composée f ◦ g deux fonctions convexes est convexe dans le cas où f est
croissance. En reprenant les notations de la définition, ceci se démontre par l’implication suivante :

1. Elle est en fait concave sur
]
−∞,− 1

2

]
et convexe sur

[
− 1

2 ,+∞
[

.
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g
(
λx + (1−λ)y

)
⩽ λg (x)+ (1−λ)g (y) =⇒

( f ◦ g )
(
λx + (1−λ)y

)
⩽
↑

f croissante

f
(
λg (x)+ (1−λ)g (y)

)
⩽
↑

f convexe

λ( f ◦ g )(x)+ (1−λ)( f ◦ g )(y)

Si f : I → J est convexe, bijective et strictement croissante (resp. décroissante), alors f −1 est concave
(resp. convexe). En effet, avec les notations de la définition :

f
(
λx + (1−λ)y

)
⩽ λ f (x)+ (1−λ) f (y) =⇒

λx + (1−λ)y︸ ︷︷ ︸
λ f −1

(
f (x)

)
+(1−λ) f −1

(
f (y)

) ⩽ f −1(λ f (x)+ (1−λ) f (y)
)

et on conclut en remarquant que tout élément de J s’écrit sous la forme f (z) avec z ∈ I par surjectivité
de f .

En général, la composée de deux fonctions convexes ne l’est pas : x 7→ x2 et x 7→ −x sont convexes sur
Rmais pas x 7→ −x2.
On abordera avec profit les tests

(
E7.1

)
et

(
E7.2

)
.

2. Caractérisation de la convexité par les pentes

En observant la figure ci-dessous, on conjecture facilement les deux caractérisations suivantes de la
convexité :

Proposition 7.3. Caractérisation de la convexité par les pentes
(
E7.3

)
Soit I un vrai intervalle et f : I →R. Les trois propriétés suivantes sont équivalentes :

a. f est convexe;

b. Pour tout (a,b,c) ∈ I2 tel que a < b < c, on a

f (b)− f (a)

b −a
⩽

f (c)− f (a)

c −a
⩽

f (c)− f (b)

c −b

c. Pour tout a dans I, le taux d’accroissement τa : I \ {a} →R, x 7→ f (x)− f (a)

x −a
est croissant.

L’équivalence de a. et b. est connue sous l’appellation « lemme
des trois pentes » et se retient facilement au moyen de la figure
ci-contre :

p1 ⩽ p2 ⩽ p3

Ces propriétés des pentes nous permettrons de faire le lien entre
la courbe et ses tangentes en cas de dérivabilité de la fonction.

a b c

p2 p1

p3

On déduit de cette caractérisation la position relative du graphe d’une fonction convexe avec l’une de
ses sécantes en-dehors de la corde portée par celle-ci.

LLG . HX 6 6



2025-2026 Laurent Kaczmarek

Supposons que f soit convexe sur un intervalle I et
fixons (x, y) ∈ I2 tel que x < y .

La droite passant par les points de la courbe de f d’abs-
cisses x et y (on parle de sécante, à bien distinguer
d’une corde qui est un segment) est en-dessous de la
courbe sur les intervalles ]−∞, x]∩ I et [x,+∞[∩I.

yx

yx

3. Caractérisation des fonctions convexes dérivables

En observant le graphe d’une
fonction convexe et dérivable, on
conjecture qu’une fonction déri-
vable sur un vrai intervalle I est
convexe si et seulement si sa dé-
rivée est croissante (cf. l’échan-
tillon de tangentes représenté ci-
contre).

Pentes
croissantes

Proposition 7.4. Caractérisation des fonctions dérivables convexes

Soit I un vrai intervalle et f : I →R.

a. Si f est dérivable sur I, alors f est convexe si et seulement si f ′ est croissante.

b. Si f est deux fois dérivable sur I, alors f est convexe si et seulement si f ′′ ⩾ 0.

On adapte ces énoncés au cas concave : si f est dérivable, f est concave si et seulement si f ′
décroissante, et si f est deux fois dérivable, f est concave si et seulement si f ′′ ⩽ 0.

Cette proposition permet d’établir très efficacement la convexité d’une fonction deux fois dérivable.
Par exemple, le logarithme est concave surR∗+ et l’exponentielle est convexe surR car

∀x > 0, ln′′(x) = − 1

x2
< 0 et ∀x ∈R , exp′(x) = exp(x) > 0

On pourra s’entraîner au moyens des tests
(
E7.4

)
et

(
E7.5

)
.

La convexité d’une fonction dérivable peut être
caractérisée au moyen des positions relatives de
sa courbe et ses tangentes.

Proposition 7.5. Convexité et tangentes

Soit I un vrai intervalle et f : I →R dérivable.
La courbe de f est située au-dessus de ses tangentes sur I si et seulement si f est convexe.

En reprenant les notations et les hypothèses de cette proposition, on a donc pour x0 ∈ I :

LLG . HX 6 7
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∀x ∈ I , f (x) ⩾ f ′(x0)(x −x0)+ f (x0)
↑

(la tangente en x0 a pour équation y = f ′(x0)(x −x0)+ f (x0))

On retrouve ainsi les inégalités usuelles sur l’exponentielle (x0 = 0) et le logarithme (x0 = 1) :

∀x ∈R , ex ⩾ 1+x et ∀x > 0, ln x ⩽ x −1

4. Inégalités de convexité

La définition analytique de la convexité admet une généralisation très utile à n points réels. Avant de
l’énoncer, il nous faut étendre la définition d’une combinaison linéaire convexe de deux à un nombre
fini quelconque de termes. Pour un entier naturel n non nul et des réels x1, . . ., xn , on appelle combi-
naison linéaire convexe de x1, . . ., xn tout réel de la forme

n∑
i=1

λi xi où (λ1, . . . ,λn) ∈Rn
+ et

n∑
i=1

λi = 1

Il n’est pas difficile de démontrer que l’ensemble des combinaisons linéaires convexes des nombres
x1, . . ., xn est l’intervalle [

min
1⩽i⩽n

xi , max
1⩽i⩽n

xi ,

]
En particulier, si les xi appartiennent à un même intervalle I, il en est de même de toutes leurs combi-
naison linéaires convexes. Afin de parfaire son intuition, le lecteur aura intérêt à interpréter une com-
binaison linéaire convexe comme une moyenne pondérée à coefficients positifs et dont la somme
vaut 1.

Proposition 7.6. Inégalité de Jensen
(
E7.6

)
Soit I un vrai intervalle et f : I →R convexe. Pour tout n ∈N∗, (x1, . . . , xn) ∈ In et tout (λ1, . . . ,λn) ∈Rn+
tel que

n∑
k=1

λk = 1, on a

f

(
n∑

k=1
λk xk

)
⩽

n∑
k=1

λk f (xk )

En particulier f

(
1

n

n∑
k=1

xk

)
⩽

1

n

n∑
k=1

f (xk ). En cas de concavité, l’inégalité est dans l’autre sens.

Le logarithme étant concave sur R∗+, on en déduit que pour n ∈N∗ et n réels strictement positifs x1,
. . ., xn , on a

ln n

√
n∏

k=1
xk =

n∑
k=1

ln xk

n
⩽ ln

(
n∑

k=1

xk

n

)

d’où par croissance de l’exponentielle n

√
n∏

k=1
xk ⩽

x1 +·· ·+xn

n
· (
E7.7

)
On retrouve l’inégalité arithmético-géométrique, qui reste valable si l’un des xk est nul.
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La convexité est une puissante pourvoyeuse d’inégalités

On dispose de la définition et sa généralisation par Jensen, des inégalités sur les pentes, de la com-
paraison du graphe aux cordes et aux tangentes en cas de dérivabilité. Il est facile de comparer une
fonction convexe et une fonction affine.

1

π

2

π

2
0

y = x

y = sin x

y = 2x

π

Comme sin′′ =−sin, le sinus est concave sur l’intervalle
[
0, π2

]
.

En considérant la tangente à l’origine et la corde joignant les ex-
trémités de courbe du sinus aux bornes de cet intervalle, on en
déduit que

∀x ∈
[

0,
π

2

]
,

2x

π
⩽ sin x ⩽ x

L’inégalité AG uv ⩽ u2+v2

2 pour (u, v) ∈R2+ admet une généralisation à (p, q) ∈ (
R∗+

)2 tel que
1

p
+ 1

q
= 1 :

∀(u, v) ∈R2
+ , uv ⩽

up

p
+ uq

q
(Inégalité de Young)

Elle est banale si u = 0 ou v = 0, et sinon elle découle de la concavité et la stricte croissance du loga-
rithme :

lnup

p
+ ln v q

q︸ ︷︷ ︸
=lnuv

⩽ ln

(
up

p
+ uq

q

)

On en déduit une généralisation de l’inégalité de Cauchy-Schwarz :

∀n ∈N∗ , ∀(a1, . . . , an ,b1, . . . ,bn) ∈R2n
+ ,

n∑
i=1

ai bi ⩽

(
n∑

i=1
ap

i

) 1
p
(

n∑
i=1

bq
i

) 1
q

(Inégalité de Hölder)

Cette inégalité est banale si tous les ai ou tous les bi sont nuls. Dans le cas contraire, on conclut en
posant ui := ai(∑n

i=1 a
p
i

) 1
p

et vi := bi(∑n
i=1 b

p
i

) 1
p

pour tout i ∈ �1,n� et en appliquant l’inégalité de Young :

n∑
i=1

ui vi ⩽
1

p

n∑
i=1

ap
i

n∑
i=1

ap
i

+ 1

q

n∑
i=1

bp
i

n∑
i=1

bp
i

= 1

p
+ 1

q
= 1

5. Compléments sur les fonctions convexes

5.1. Stricte convexité

Une fonction f : I →R, où I est un vrai intervalle deR, est dite strictement convexe si toutes ses cordes
ouvertes sont strictement situées au-dessus de sa courbe représentative.

LLG . HX 6 9
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Définition 7.7. Fonction strictement convexe

Soit I un vrai intervalle deR. Une fonction f : I →: R est dite :

strictement convexe si pour tout (x, y) ∈ I2 tel que x ̸= y ,

∀λ ∈ ]0,1[ , f
(
λx + (1−λ)y

) < λ f (x)+ (1−λ) f
(
y
)

ce qui équivaut à ∀(x, y) ∈ I2 , x < y =⇒ ∀z ∈]x, y[ ,
f (y)− f (x)

y −x
(z −x)+ f (x) ⩾ f (z).

concave si pour tout (x, y) ∈ I2 tel que x ̸= y ,

∀λ ∈ ]0,1[ , f
(
λx + (1−λ)y

)
⩾ λ f (x)+ (1−λ) f

(
y
)

ce qui équivaut à ∀(x, y) ∈ I2 , x < y =⇒ ∀z ∈ [x, y] ,
f (y)− f (x)

y −x
(z −x)+ f (x) ⩽ f (z).

Proposition 7.8. Fonctions convexes mais pas strictement

Soit f : I →R convexe. La fonction f n’est pas strictement convexe si et seulement si il existe J ⊂ I,
intervalle ouvert non vide, tel que f |J soit affine.

Une fonction strictement convexe
(toutes les cordes ouvertes sont
situées strictement au-dessus du
graphe) et une autre convexe mais
pas strictement (il existe une portion
affine non réduite à un point dans
le graphe, celui-ci admet une « fa-
cette »). J

On en déduit facilement que :

Une fonction f : I → R dérivable est strictement convexe si et seulement si f ′ est croissante et il
n’existe aucun J ⊂ I, intervalle ouvert non vide, tel que f ′|J soit constante.

Une fonction f : I → R deux fois dérivable est strictement convexe si et seulement si f ′′ ⩾ 0 et il
n’existe aucun J ⊂ I, intervalle ouvert non vide, tel que f ′′|J soit nulle.

Les énoncés concernant les opérations sur les fonctions convexes se généralisent facilement aux fonc-
tions strictement convexes.

5.2. Régularité d’une fonction convexe

Nous avons justifié que x 7→ |x| (définie sur R) est une fonction convexe ; nous savons depuis la cha-
pitre AN 4 qu’elle n’est pas dérivable en 0 mais admet des dérivées à gauche et à droite en ce point.
Dans le théorème suivant, nous allons démontrer que l’existence de dérivées latérales se généralise à
toute fonction convexe sur l’intérieur de son intervalle de définition.
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Proposition 7.9. Régularité d’une fonction convexe

Soit f : I →R une fonction convexe définie sur un vrai intervalle I deR.

a. f est dérivable à gauche et à droite en tout point intérieur x0 à I et f ′
g (x0) ⩽ f ′

d (x0).

b. En particulier, f est continue en tout point intérieur à I.

On remarquera qu’une fonction convexe sur un intervalle I peut ne pas être continue en une borne
de I lorsqu’elle y est définie, et peut le cas échéant ne pas y être dérivable (tangente verticale).

Définition 7.10. Droite d’appui

Soit I un vrai intervalle, f : I →R une fonction convexe et a ∈ I. On appelle droite d’appui en a au
graphe de f toute droite passant par

(
a, f (a)

)
et située sous le graphe de f .

Proposition 7.11. Droites d’appui d’une fonction convexe

Soit I un vrai intervalle, f : I →R et a un point intérieur à I. La droite passant par le point
(
a, f (a)

)
et de pente p ∈R est une droite d’appui au graphe de f en ce point si et seulement si f ′

g (a) ⩽ p ⩽
f ′

d (a).

a

pentes f ′
g (a) et f ′

d (a)

pente p ∈ [
f ′

g (a), f ′
d (a)

]

a

Droites d’appui en a On peut démontrer l’in-
égalité de Jensen au moyen
d’une droite d’appui. Repre-
nons les notations de cette
proposition. Considérons
une droite d’appui pour f
au point d’abscisse

a :=
n∑

i=1
λi xi

Son équation s’écrit y = p(x−a)+ f (a). Pour tout indice i dans �1,n�, on a f (xi ) ⩾ (xi −a)+ f (a) d’où
λi f (xi ) ⩾ λi (xi −a)+λi f (a) puis

n∑
i=1

λi f (xi ) ⩾
n∑

i=1

(
λi (xi −a)+λi f (a)

) = n∑
i=1

λi xi −a + f (a) = f (a)
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6. Tests

7.1. 4 �

Soit f : [0,1] →R convexe sur [0,1[. Peut-on affirmer que f est convexe sur [0,1] ?

7.2. 4 �

Soit f , g : I →R convexes. Les fonctions inf( f , g ) et sup( f , g ) sont-elles convexes ?

7.3. 4 �

Soit f :R+ →R une fonction telle que τ0 : x 7→ f (x)− f (0)

x
soit croissante surR∗+.

Peut-on en déduire que f est convexe ?

7.4. 4 �

Montrer que f : x 7→ lnln x est concave sur ]1,+∞[.

7.5. 4 �

Soit f , g : [0,1] →R deux fois dérivables telles que f (0) = g (0), f (1) = g (1) et f ′′ ⩽ g ′′. Démontrer que
f ⩽ g .

7.6. 4 �

Démontrer que pour tous réels a, b et c, on a (a +b + c)4 ⩽ 27
(
a4 +b4 + c4

)
.

7.7. 4 �

Soit n ∈N∗ et x1, . . ., xn strictement positifs. Démontrer que

x1

x2
+ x2

x3
+·· ·+ xn−1

xn
+ xn

x1
⩾ n
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7. Solutions des tests

7.1. ; �

Non. Comme l’illustre le contre-exemple sui-
vant :

1

1

0

7.2. ; �

La réponse est négative pour inf( f , g ) comme le
prouve le contre-exemple de I := [0,1], f : x 7→ x
et g : x 7→ 1−x :

1

2

1

2

inf( f , g )

10

Nous allons établir que h := sup( f , g ) est
convexe. Pour (x, y) ∈ I2 et λ ∈ [0,1]. Notons
zλ := λx + (1−λ)y . On a{

λ f (x)+ (1−λ) f (y) ⩽ λh(x)+ (1−λ)h(y)

λg (x)+ (1−λ)g (y) ⩽ λh(x)+ (1−λ)h(y)

car λ et 1−λ sont positifs. On en déduit que d’où{
f (zλ) ⩽ λh(x)+ (1−λ)h(y)

g (zλ) ⩽ λh(x)+ (1−λ)h(y)

h(zλ) ⩽ λh(x)+ (1−λ)h(y)

7.3. ; �

Non, comme l’illustre le contre-exemple sui-
vant :

1

1

2

2

0

7.4. ; �

La fonction f est deux fois dérivable sur ]1,+∞[
en tant que composée de fonctions de classe
C 2. De plus,

∀x > 1, f ′′(x) = − 1+ ln x

(x ln x)2
< 0

Ainsi f est concave sur ]1,+∞[.

7.5. ; �

La fonction h := g − f est convexe car h′′ = f ′′−
g ′′ ⩾ 0. Le graphe de h est donc sous la corde
joignant les points d’abscisses 0 et 1. Comme
h(1) = h(0) = 0, on en déduit que h ⩽ 0 d’où
f ⩽ g .

7.6. ; �

L’inégalité équivaut à(
a +b + c

3

)4

⩽
a4 +b4 + c4

3

et découle de la convexité de f : x 7→ x4 sur R
(on vérifie sans peine que f est deux fois déri-
vable et f ′′ ⩾ 0).

7.7. ; �

Posons xn+1 := x1. On applique l’inégalité AG :

1

n

n∑
k=1

xk

xk+1
⩾ n

√
n∏

k=1

xk

xk+1
= 1
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