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Nous poursuivons le cours d’analyse par la notion de convexité, qui a lentement
émergé dans l'histoire, jusqu'a devenir un outil puissant et tres largement étudié
depuis le XX¢ siecle.
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A premiere occurence historique de I'idée de convexité semble remonter a Archimede, vers
250 avant Jésus-Christ. Le savant de Syracuse a introduit cette notion afin de justifier le calcul
des ses approximations de m au moyen de polygones convexes.

[llustration du principe des approxima-
tions de m obtenues par Archimede (cf. la
gravure ci-contre datant du XVI° siecle) au
moyen d'un argument de convexité.

Le savant affirma qu’'une courbe convexe
contenue a l'intérieur d’'une autre courbe
convexe % a une longueur inférieure a

celle de %

Apres avoir été utilisées par quelques précurseurs tels que Hermite, Holder et Stolz, les fonctions
convexes sont devenues I'objet d'une étude spécifique depuis les travaux de Jensen. Au cours du XX®
siecle, la notion de convexité a été progressivement généralisée a différents cadres : I'analyse fonc-
tionnelle géométrique, I'optimisation non-linéaire, I’analyse convexe, etc.

Hermite Holder Jensen

Elle compte de nombreuses applications tant théoriques (le théoréme de projection sur un convexe
fermé par exemple) que pratiques (citons les innombrables algorithmes d’optimisation tres large-
ment utilisés de nos jours).

Le theme des fonctions convexes a été popularisé par le célébre ouvrage Inequalities publié en 1934
par Hardy, Littlewood et Pélya, maintes fois réédité et qui reste une référence inégalée jusqu’a nos
jours.

Le succes de la notion de convexité tient a sa profonde interaction avec la géométrie et 'analyse, elle
a fourni de nombreuses inégalités en analyse (dans des cadres variés) et en géométrie. Elle admet de
nombreuses ramifications qui la rendent toujours d’actualité dans la recherche contemporaine.
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1. Introduction a la convexité

Dans ce qui suit on identifie R? au plan et, pour tout couple de points (X,Y), on note [X,Y] le segment
joignant X et Y.

Définition 7.0. Parties convexes de R?
Y

Soit A < R?. On dit que A est convexe si /
V(X,Y) e A%, [X,YIcA Y
X /

La partie de gauche est convexe mais pas X
celle de droite.

Définition 7.1. Fonction convexe

Soit I un intervalle de R. Une fonction f:1 — R est dite convexe si’ensemble suivant est convexe
epi f:={(x,y) elxR;y > f(x)} (épigraphe de f)

La fonction f est dite concave si son hypographe hyp f := {(x,y) e IxR; y < f(x)} est convexe.

Dans les figures ci-dessous, les graphes, épigraphes et hypographes sont respectivement représentés
en rouge, bleu et vert.

AL
\/ \V /

Les fonctions représentées sont, de gauche a droite, ni convexe ni concave, convexe et concave.

Une fonction peut admettre des convexités différentes selon I'intervalle auquel on la restreint. Un
point ot la fonction change de convexité est appelé point d’inflexion.

Point
. :
d’inflexion Convexe

Concave
‘ /):\/
\/ Point d’inflexion :

Convexe

Il n’est pas difficile de caractériser les fonctions convexes au moyen de leurs cordes.
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En effet, tout épigraphe E vérifie la propriété suivant
V(x,y) €E,Vy'eR,y >y = (x,))€E /

De facon plus imagée : tout point « au-dessus» d'un point de E appartient

aussi a E. On en déduit qu'une fonction f : 1 — R est convexe si et seule-

ment si toutes ses cordes sont situées au-dessus de son graphe (pour mon-

trer que le segment « du haut » est inclus dans epi f, il suffit d’établir que

celui « du bas » est inclus dans epi f). X X2

Nous allons commencer par trouver une formulation analytique équivalente a cette définition.

y Soit f: I — R (avec I vrai intervalle), (x,y) € 12 tels que x < .
B Fixons z dans [x, y]. Celui s’écrit z=Ax+(1—-A)you A€ [0,1].

1l s’agit de comparer les points M(z, f(z)) du graphe de f et
N N(z, w) de la corde [AB]. Celle-ci est d’équation Y = aX +f3, d’'ott

w=az+p=Aax+p)+1A-Nay+p) =Af(xX)+1-N)f(y)

M Ainsi, la convexité de f sur I est caractérisée par :

V(x,y) €12, YA€[0,1], fAx+1=Ny) < AfX) + 1 -Nfy)
En explicitant ’équation de la corde [AB] sous la forme

Droite passant par A (x, f(x))

S yv <N ~- -~ ~- - etdepenteM
=pente de (AB) x =abscisse de A f(x)=ordonnée de A y—x
on obtient une autre caractérisation de la convexité :
Y(x,y)el?, Yz e [x,y], ——— ALy iC) f( ) -x)+f(x) = f(2)
y-

Définition 7.2. Fonction convexe

Soit I un vrai intervalle de R. Une fonction f :1—:Rest dite :
= convexesiV(x,y) €14, YA€ [0,1], f(Ax+ (1 -Ny) < Af(x)+ Q=N f(y), ce qui équivaut a

f-fx f( )
y-

V(x,y)el?, Vze[x,y], ——""(z—x) + f(x) > f(2)

= concave si V(x,y) €1?, VA€ [0,1], f(Ax+(1—AN)y) = Af (x)+ (1 - A f(y), ce qui équivaut a

fW-rx f( )
y-

V(x,y)€l?, Vzex,y], ——(z-x)+ f(x) < f(2)

Il est clair que f est concave si et seulement si — f convexe.

On déduit directement de la définition géométrique qu’une fonction est concave et convexe si et seule-
ment si elle est affine.

LLG ¥ HX6 4



2025-2026 Laurent Kaczmarek

Continuons par quelques exemples et contre-exemples de fonctions convexes. Pour (a,b) € R?, la
fonction f: x — |ax + b| est convexe. En effet, pour (x, y) € RZetAe0,1]

fAx+(1-Ny) =|arx+al-Ny+b| = |A(ax+Db)+ 1 -MN(ay+Db)|
< |Aax+b)|+|Q-N(ay+b)| = Af(x)+(1-Nf(y) (parlinégalité triangulaire)

définie sur R.On a

1
x+=
2

2
x__ [—
2

t Considérons la fonction h: x —

VxeR, h(x) =< -2x si

Puisque la corde joignant les points d’abscisses —1 et 1 n’est ni au-
dessus, ni au-dessous de la courbe, la fonction & n’est ni convexe,

ni concave .

La fonction g : x — x? est convexe car

V(x,y) e R*, VAe[0,1], g(Ax+(1-Ny)-Ag(x) -1 -Ng() = A1 - (x-y)?* >0

) 1
La fonction x — — est convexe sur R} car
X

1_1
y x(z_le_l:W >
y—x X z xyz

0

V(x,y) €]0,+00[%, Vz€ [x,7],

Quelques propriétés s'imposent comme des évidences : si f est convexe, alors A f est convexe si
A € R4, concave si A € R_. La somme de deux fonctions convexes est convexe. Le produit de deux
fonctions convexes ne I'est pas nécessairement : les fonctions f : x — x et g : x — x> sont convexes sur

R mais par leur produit.

A

Sous réserve d’existence, la composée f o g deux fonctions convexes est convexe dans le cas ou f est
croissance. En reprenant les notations de la définition, ceci se démontre par I'implication suivante :

1. Elle est en fait concave sur ] — 00, —% et convexe sur [ - %, +00 [
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gAx+1-Ny) < AgW+0-NgQy) =
(fe®(Ax+1-Ny) § fAg@+1-NgWm) § AMfog)(x)+(1-N(fog)(y)
f croissante f convexe

Si f:1— ] est convexe, bijective et strictement croissante (resp. décroissante), alors f~! est concave
(resp. convexe). En effet, avec les notations de la définition :

FAx+1=Ny) K Af@)+A-NfQy) =
Ax+(1=Ny <A+ -NF()
N —
A (f)+a-nr (Fo)

et on conclut en remarquant que tout élément de J s’écrit sous la forme f(z) avec z € I par surjectivité
de f.

En général, la composée de deux fonctions convexes ne I'est pas : x — x? et x — — X sont convexes sur
R mais pas x — —x?.
On abordera avec profitles tests (#7.1)et (/7.2).

2. Caractérisation de la convexité par les pentes

En observant la figure ci-dessous, on conjecture facilement les deux caractérisations suivantes de la
convexité :

Proposition 7.3. Caractérisation de la convexité par les pentes (7 7.3)

Soit I un vrai intervalle et f: 1 — IR. Les trois propriétés suivantes sont équivalentes :
a. f est convexe;
b. Pour tout (a, b, ¢) € I tel quea<b<c,ona

f) - fa) - flo-fla - flo-f

~ X
b—a c—a c—b

c. Pour tout a dans I, le taux d’accroissement 1, : I\ {a} — R, x est croissant.

_)f(x)—f(a)
X—d

p3
L'équivalence de a. et b. est connue sous I'appellation «lemme
des trois pentes » et se retient facilement au moyen de la figure
ci-contre :

192 ]91

p1 < p2 < p3

Ces propriétés des pentes nous permettrons de faire le lien entre
la courbe et ses tangentes en cas de dérivabilité de la fonction.

On déduit de cette caractérisation la position relative du graphe d'une fonction convexe avec I'une de
ses sécantes en-dehors de la corde portée par celle-ci.
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Supposons que f soit convexe sur un intervalle I et
fixons (x, y) € I tel que x < .

La droite passant par les points de la courbe de f d’abs-

cisses x et y (on parle de sécante, a bien distinguer -
d'une corde qui est un segment) est en-dessous de la >
courbe sur les intervalles | — oo, x] N1 et [x, +oo[NI.

3. Caractérisation des fonctions convexes dérivables

fonction convexe et dérivable, on
conjecture qu'une fonction déri-
vable sur un vrai intervalle I est /
convexe si et seulement si sa dé- yd
rivée est croissante (cf. I’échan- _— o e
tillon de tangentes représenté ci-
contre).

En observant le graphe d’'une /

Proposition 7.4. Caractérisation des fonctions dérivables convexes
Soit [ un vrai intervalle et f:1— R.
a. Si f est dérivable sur [, alors f est convexe si et seulement si f’ est croissante.

b. Si f est deux fois dérivable sur I, alors f est convexe si et seulement si "' > 0.

On adapte ces énoncés au cas concave : si f est dérivable, f est concave si et seulement si f'
décroissante, et si f est deux fois dérivable, f est concave si et seulement si f"' <O0.

Cette proposition permet d’établir tres efficacement la convexité d'une fonction deux fois dérivable.
Par exemple, le logarithme est concave sur R} et1’exponentielle est convexe sur R car

1
Vx>0,In"(x) = —= <0 et VxeR, exp'(x) = exp(x) >0
x

On pourra s'entrainer au moyens des tests (£ 7.4 )et  (£7.5).

/

/ La convexité d'une fonction dérivable peut étre
/ caractérisée au moyen des positions relatives de

__— sa courbe et ses tangentes.
P

-

Proposition 7.5. Convexité et tangentes
Soit I un vrai intervalle et f : I — R dérivable.
La courbe de f est située au-dessus de ses tangentes sur [ si et seulement si f est convexe.

En reprenant les notations et les hypotheses de cette proposition, on a donc pour xp €1:
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Vxel, f(x) = f(x0)(x— xo) + f(x0)
1

(la tangente en xp a pour équation y = f’(xq) (x — xo) + f (x0))
On retrouve ainsi les inégalités usuelles sur I’exponentielle (xy = 0) et le logarithme (xo =1) :

VxeR,e*>14+4x et Vx>0, Inx < x-1

4. Inégalités de convexité

La définition analytique de la convexité admet une généralisation trés utile a n points réels. Avant de
I’énoncer, il nous faut étendre la définition d’'une combinaison linéaire convexe de deux a un nombre
fini quelconque de termes. Pour un entier naturel » non nul et des réels xi, ..., x,, on appelle combi-
naison linéaire convexe de xi, ..., X, tout réel de la forme

n n
Z)\ixl- ou (Al,...,)\n)ERz et Z)\i =1
i=1 i=1

Il n’est pas difficile de démontrer que I'ensemble des combinaisons linéaires convexes des nombres
X1, ..., X, estl’intervalle

min x;, max Xx;,
1<i<n = 1<i<n

En particulier, siles x; appartiennent a un méme intervalle I, il en est de méme de toutes leurs combi-
naison linéaires convexes. Afin de parfaire son intuition, le lecteur aura intérét a interpréter une com-
binaison linéaire convexe comme une moyenne pondérée a coefficients positifs et dont la somme
vaut 1.

Proposition 7.6. Inégalité de Jensen (7 7.6)
SoitIunvraiintervalleet f : 1 — R convexe. Pour tout n € IN*, (x1,...,x,) € I" ettout (Ay,...,A,) e R¥

n
telque ) Ar=1,0na
k=1

f(i A Xk
k=1

< ) Aef(xp)
k=1

1 n n

En particulier f (— Z xk) < — Z f(xx). En cas de concavité, I'inégalité est dans 'autre sens.

n
k=1 k=1

Le logarithme étant concave sur R}, on en déduit que pour n € N* et n réels strictement positifs x;,
.o Xp,0Nna

L X1+ +x
d’ott par croissance de I'exponentielle {/ [ ] xx < % (£7.7)
k=1

On retrouve I'inégalité arithmético-géométrique, qui reste valable sil'un des x; est nul.
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La convexité est une puissante pourvoyeuse d’inégalités

On dispose de la définition et sa généralisation par Jensen, des inégalités sur les pentes, de la com-
paraison du graphe aux cordes et aux tangentes en cas de dérivabilité. Il est facile de comparer une
fonction convexe et une fonction affine.

y=sinxX  Comme sin” = —sin, le sinus est concave sur I'intervalle [0, %].
En considérant la tangente a I'origine et la corde joignant les ex-
y= 2x trémités de courbe du sinus aux bornes de cet intervalle, on en
n déduit que
/
— Vxe [0 ] <sinx < x

1 1
Linégalitée AG uv < fi pour (u,v) e ]R2 admet une généralisation a (p, q) € (IR*) tel que _+5 =1:
p

uP  u
V(u,v)eR?, uv < ? + 7 (Inégalité de Young)

Elle est banale si u = 0 ou v = 0, et sinon elle découle de la concavité et la stricte croissance du loga-
rithme :

<In|—+—

p q p q
[ —
=lnuv

On en déduit une généralisation de I'inégalité de Cauchy-Schwarz :

Inu”? Inv9 uP  ud
+ <1

1
n n P
vnelN*, V(ai,...,an by,..., b)) R, Y aib; < (Z af)
= i=1

n q
Y b?) (Inégalité de Holder)
i=1

Cette inégalité est banale si tous les a; ou tous les b; sont nuls. Dans le cas contraire, on conclut en

posant u; := 4 ety = bi - pour tout i € [1, n] et en appliquant I'inégalité de Young :
(Zi, af)? (Zi, 61)7
n
Loai X
& 1 i=1 ll:1 1 1
A P A
= Z Z bl

i=1

5. Compléments sur les fonctions convexes

5.1. Stricte convexité

Une fonction f:1— IR, oul est un vrai intervalle de IR, est dite strictement convexe si toutes ses cordes
ouvertes sont strictement situées au-dessus de sa courbe représentative.
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Définition 7.7. Fonction strictement convexe

Soit I un vrai intervalle de R. Une fonction f:1—:R est dite :

= strictement convexe si pour tout (x, y) € I tel que x # y,

YA€]0, 1], f(Ax+(1=Ny) < Af () +1-Nf(y)

f» —f(x)(
y—Xx

ce qui équivaut a vV (x, y) er?, x<y = Vzelx,yl, z—x)+ f(x) = f(z).

=» concave si pour tout (x, y) € 12 tel quex#y,

YA€) 1], f(Ax+(1=Ny) ZAf () +1-Nf(y)

ce qui équivaut a V(x, y) EIZ, x<y = Vzel[xyl,

] W(z—mﬂm < f(@).

Proposition 7.8. Fonctions convexes mais pas strictement

Soit f: 1 — IR convexe. La fonction f n’est pas strictement convexe si et seulement si il existe ] < 1,
intervalle ouvert non vide, tel que f/; soit affine.

Une fonction strictement convexe
(toutes les cordes ouvertes sont
situées strictement au-dessus du
graphe) et une autre convexe mais /
pas strictement (il existe une portion

affine non réduite a un point dans / /

le graphe, celui-ci admet une «fa- — |
cette »).

On en déduit facilement que :

= Une fonction f : 1 — R dérivable est strictement convexe si et seulement si f’ est croissante et il
n’existe aucun J I, intervalle ouvert non vide, tel que f'|; soit constante.

= Une fonction f : I — R deux fois dérivable est strictement convexe si et seulement si f" > 0 et il
n’existe aucun J < I, intervalle ouvert non vide, tel que f”'|; soit nulle.

Les énoncés concernant les opérations sur les fonctions convexes se généralisent facilement aux fonc-
tions strictement convexes.

5.2. Régularité d’'une fonction convexe

Nous avons justifié que x — |x| (définie sur R) est une fonction convexe; nous savons depuis la cha-
pitre AN 4 qu’elle n’est pas dérivable en 0 mais admet des dérivées a gauche et a droite en ce point.
Dans le théoréme suivant, nous allons démontrer que I'existence de dérivées latérales se généralise a
toute fonction convexe sur l'intérieur de son intervalle de définition.
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Proposition 7.9. Régularité d’'une fonction convexe

Soit f :I— IR une fonction convexe définie sur un vrai intervalle I de RR.
a. f est dérivable a gauche et a droite en tout point intérieur xp a I et fg’(xo) <f é(xo).

b. En particulier, f est continue en tout point intérieur a I.

On remarquera qu’'une fonction convexe sur un intervalle I peut ne pas étre continue en une borne
de Ilorsqu’elle y est définie, et peut le cas échéant ne pasy étre dérivable (tangente verticale).

A A A

| /.
N

Définition 7.10. Droite d’appui

Soit I un vrai intervalle, f : I — R une fonction convexe et a € I. On appelle droite d’appui en a au
graphe de f toute droite passant par (a, f(a)) et située sous le graphe de f.

Proposition 7.11. Droites d’appui d’'une fonction convexe

Soit I un vrai intervalle, f :I — R et @ un point intérieur a I. La droite passant par le point (a, f(a))
et de pente p € R est une droite d’appui au graphe de f en ce point si et seulement si fé(a) <p<

fi(@.

pente p € [ fy(a), f(a)] Droites d’appui en a On peut démontrer Iin-
égalité de Jensen au moyen

d’une droite d’appui. Repre-
nons les notations de cette
proposition. Considérons
une droite d’appui pour f
au point d’abscisse

n
> - a = Z)\,‘xl‘
i=1

Son équation s’écrit y = p(x—a) + f(a). Pour tout indice i dans [1,n], ona f(x;) > (x; —a)+ f(a) d ot
Aif(xi) 2 Ai(xi—a)+ A, f(a) puis

n n

n
Nif(xi) =) (Nixi—a)+Nif (@) = Y Aixi—a+ f(a) = f(a)
1

i: l:l l:1
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6. Tests

71.®D
Soit f:[0,1] — R convexe sur [0, 1[. Peut-on affirmer que f est convexe sur [0,1] ?

7.2.®D
Soit f, g :1— R convexes. Les fonctions inf(f, g) et sup(f, g) sont-elles convexes ?

73.®9

Fx) - f(0)

Soit f : R4+ — R une fonction telle que Tt : x — —————— soit croissante sur R} .
X
Peut-on en déduire que f est convexe ?

74. ®9
Montrer que f : x — Inln x est concave sur |1, +oo].

75.®D
Soit f,g:[0,1] — R deux fois dérivables telles que f(0) = g(0), f(1) = g(1) et f”" < g’". Démontrer que
f<s.

7.6. ®'D
Démontrer que pour tous réels a, b et c,ona (a+ b+ c)* < 27(a* + b* + ¢*).

77.®9

Soit ne IN* et x1, ..., X, strictement positifs. Démontrer que
X1 X2 Xn—1 X
P Rt i Y |
X2 X3 Xn X1

LLG € HX6 12
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7. Solutions des tests

7.1.e8 O

Non. Comme l'illustre le contre-exemple sui-
vant :

—d
0

7.2.88 O

La réponse est négative pour inf(f, g) comme le
prouve le contre-exemple de I:=[0,1], f: x— x
etg:x—1-x:

inf(f, g)

—q
0

Nous allons établir que h := sup(f,g) est
convexe. Pour (x,y) € I2et A€ [0,1]. Notons
zZy:=Ax+(1-A)y.Ona

{ A+ 1A=V f(y) < Ah(x) + A - Nh()
Ag(x)+(1—-Ng(y) < Ah(x)+(1-ANh(y)
car A et 1—A sont positifs. On en déduit que d’ou
{f(zk) < AR(x) + (1= N)A(y)
g(z)) < Ah(x)+ (1 -Nh(y)
h(z)) < Ah(x) + (1 =A)h(y)

7.3.88 O

Non, comme l'illustre le contre-exemple sui-
vant :

LLG ¥ HX6

—q —_—
0

74.88 O

La fonction f est deux fois dérivable sur |1, +oo|
en tant que composée de fonctions de classe
¢?. De plus,

l1+lnx

Vx>1, fH(X) = —m

Ainsi f est concave sur |1, 4+00l.

7.5.88 O

La fonction h:= g — f est convexe car h” = f" —
g" > 0. Le graphe de h est donc sous la corde
joignant les points d’abscisses 0 et 1. Comme
h(1) = h(0) = 0, on en déduit que h < 0 d’ou
f<g

7.6.88 O
Linégalité équivaut a
toat+ b+t
h 3

(a+b+c
3

et découle de la convexité de f: x — x* sur R
(on vérifie sans peine que f est deux fois déri-
vable et f > 0).

7.7.88 O
Posons x,+1 := x1. On applique I'inégalité AG :
12 Xk

n
Xk
> {1 =1

n =1 Xk+1
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