
Ì ALG 5 Calcul matriciel

Les mathématiques ne révèlent leurs secrets qu’à ceux qui les abordent avec pur amour,
pour leur propre beauté.

Archimède

Painting (Silver over Black, White, Yellow and Red) – Jackson Pollock
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I. Systèmes linéaires

1 � 4 Un système

Discuter et résoudre le système suivant en fonction du paramètre a ∈R :
x + y − z = 1

x + 2y + az = 2

2x + ay + 2z = 3.

2 � 4 La foire aux systèmes

Résoudre en fonction du réel m les systèmes suivants :

1.


mx + y + z = 1

x + my + z = m

x + y + mz = m2

;

2.


x − m y + m 2 z = m

m x − m 2 y + mz = 1

m x + y − m 3z = 1

;

3.


x + y + z = m +1

mx + y + (m −1)z = m

x + my + z = 1

;

4.


x + y + mz = m

x + my − z = 1

x + y − z = 1

.

3 � 4 Systèmes d’ordre n f

Soit n ⩾ 2 un entier, α ∈R et a1, . . ., an des nombres réels. Discuter et résoudre les systèmes suivants :

1.



x1 − x2 = a1

x2 − x3 = a2
...

xn−1 − xn = an−1

xn − x1 = an

; 2.



x1 + x2 = a1

x2 + x3 = a2
...

xn−1 + xn = an−1

xn + x1 = an

.

II. Calculs divers

4 � 4 Un petit calcul

Soit M ∈Mn(K) et J ∈Mn(K) la matrice dont tous les coefficients sont égaux à 1. Calculer JMJ.

LLG . HX 6 2



2025-2026 Laurent Kaczmarek

5 � 4 Produit d’une matrice et de sa transposée

Soit n ∈N∗.

1. Soit A ∈Mn(R) telle que AAT = 0. Montrer que A = 0.

2. A-t-on la même conclusion si A ∈Mn(C) ?

6 � 4 Une équation du second degré f

On note E l’équation X2 +X = A d’inconnue X dans M2(R) avec A = (
1 1
1 1

) ∈M2(R).

1. Déterminer les matrices de M2(R) qui commutent avec A.

2. En déduire les solutions de E.

7 � 4 Un inusable sur la trace f

Soit n ∈N∗, A et B deux matrices de Mn(R). Résoudre X+ (tr X)A = B dans X ∈Mn(R).

8 � 4 Un calcul de puissances f

Soit (a,b) ∈C2. Calculer les puissances des matrices suivantes : A =
(a+b 0 a

0 b 0
a 0 a+b

)
et B =

(a b 0 0
0 a b 0
0 0 a b
0 0 0 a

)
.

9 � 4 Matrice constante + matrice diagonale f

Pour (a,b) ∈C2, on considère la matrice Ma,b ∈Mn(C) suivante :

Ma,b =


a b . . . b

b a b
...

. . .
...

b . . . b a


On pose aussi U = M1,1.

1. Calculer Uk pour tout k ∈N∗. La formule est-elle encore valable pour k = 0 ?

2. En écrivant Ma,b à l’aide de U et In , en déduire Mk
a,b pour tout k ∈N.

10 � 4 Calcul d’un commutant ff

On pose A :=
(

1 2 3
0 1 2
0 0 1

)
et N :=

(
0 1 0
0 0 1
0 0 0

)
. Pour tout M ∈M3(R), on note C (M) := {

X ∈M3(R) ; XM = MX
}
.

1. Exprimer A en fonction des puissances de N et en déduire que C (N) ⊂C (A).

LLG . HX 6 3



2025-2026 Laurent Kaczmarek

2. Exprimer N en fonction des puissances de A et en déduire que C (A) ⊂C (N).

3. Établir que C (N) = {
aI3 +bN+ cN2 ; (a,b,c) ∈R3 }

4. Soit X ∈M3(R) telle que X2 = A. Justifier que X ∈C (N).

5. En déduire les solutions de l’équation X2 = A, d’inconnue X ∈M3(R).

III. Matrices inversibles

11 � 4 Utilisation d’identités remarquables f

Soit n ∈N∗. On pose M =
1 1 ... 1

0
. . .

. . .
...

...
. . .

. . . 1
0 ... 0 1

 et J =


0 1 0 ... 0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
...

. . .
. . . 1

0 ... ... 0 0

.

1. Prouver l’inversibilité et inverser M par la méthode du pivot de Gauss.

2. Calcul des puissances de M.

a. Calculer les puissances de J.

b. Exprimer M en fonction de J.

c. En déduire que M est inversible et retrouver l’expression de son inverse.

12 � 4 Calcul d’un inverse f

Soit n ∈N∗, a ∈C et

J =



0 1 0 . . . 0
...

. . .
. . .

. . .
...

...
. . .

. . . 0
...

. . . 1

0 . . . . . . . . . 0


∈Mn(C) et Ma =


1 a . . . a

0 1
. . .

...
...

. . .
. . . a

0 . . . 0 1

 ∈Mn(C)

1. Donner sans démonstration l’expression de Jk pour k ∈ �0,n� puis exprimer Ma en fonction des puis-
sances de J.

2. Soit λ ∈C. Justifier que In −λJ est inversible. Simplifier (In −λJ)
n−1∑
k=0

λk Jk et en déduire (In −λJ)−1.

3. Justifier l’inversibilité de Ma et calculer son inverse.
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13 � 4 Inversibilité d’une matrice f

Soit n ∈N∗ et A ∈ Mn(R) telle que In +A soit inversible. On pose B = (In −A)(In +A)−1. Prouver que In +B
est inversible.

14 � 4 Centrale PC-2013 f

Soit n ∈N avec n ⩾ 2 et A ∈ GLn(R).

1. Soit B la matrice obtenue en échangeant les colonnes i et j de A. Justifier que la matrice B est inversible.
Comment calculer B−1 à partir de A−1 ?

2. Soit C la matrice obtenue en ajoutant deux fois la i -ième colonne à la j -ième colonne de A. Justifier que
la matrice C est inversible. Comment calculer C−1 à partir de A−1 ?

15 � 4 Avec racines n-ièmes de l’unité ff

Soit n un entier naturel non nul et ω= e2iπ/n . On pose Ω=
(
ω(k−1)(ℓ−1)

)
1⩽k,ℓ⩽n

∈Mn(C).

Calculer ΩΩ. En déduire que Ω est inversible et calculer son inverse.

16 � 4 Matrice des min ff

Soit n ∈N∗ et An = (
min(i , j )

)
1⩽i , j⩽n . Montrer que An est inversible et calculer son inverse.

IV. Matrices remarquabes

17 � 4 Matrices stochastiques en ligne

On dit qu’une matrice de Mn,p (R) est stochastique si elle est à coefficients positifs et si la somme des élé-
ments de chaque ligne vaut 1. Soit A ∈ Mn,p (R) et B ∈ Mp,q (R) deux matrices stochastiques. Montrer que
AB est stochastique.

18 � 4 Matrices triangulaires strictes f

Pour tout p ∈N, on note Tp l’ensemble des matrices carrées M ∈Mn(R) pour lesquelles :

∀(i , j ) ∈ �1,n�2 , j < i +p =⇒ Mi , j = 0

Pour traiter correctement cet exercice, il sera profitable de se demander à quoi « ressemble » un élément de
l’ensemble Tp .

1. Déterminer Tn .
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2. Soit (p, q) ∈N2 tel que p ⩽ q . Comparer Tp et Tq pour l’inclusion.

3. Montrer que AB ∈Tp+q pour tous p et q dansN, A ∈Tp et B ∈Tq .

4. En déduire que toute matrice X de T1 est nilpotente, i.e. vérifie Xn = 0.

19 � 4 Matrices qui commutent avec les matrices diagonales ff

Soit A ∈Mn(K). Montrer que A commute avec toute matrice diagonale de Mn(K) si et seulement si elle est
elle-même diagonale.

20 � 4 Le centre de Mn(R) ff

Soit n ∈N∗. Pour tout (i , j ) ∈ �1,n�2, on note Ei , j la matrice dont tous les coefficients sont nuls sauf celui en
position (i , j ) qui vaut 1.

1. Soit (i , j ) ∈ �1,n�2 et M ∈Mn(R) tels que MEi , j = Ei , j M. Que dire des coefficients de M ?

2. Déterminer les matrices de Mn(R) qui commutent avec toutes les matrices de Mn(R).
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V. Problèmes

21 � 4 Exemples de sous-algèbres de Mn(R)

Dans tout le sujet, on fixe n ∈N tel que n ⩾ 2. Un sous-ensemble A de Mn(R) est appelé sous-algèbre de
Mn(R) s’il vérifie les propriétés suivantes :

a. ∀(λ,X,Y) ∈K×A 2, X+λY ∈A ; b. A est stable par le produit matriciel ; c. In ∈A .

Une sous-algèbre A de Mn(R) est dite commutative si ∀(X,Y) ∈A 2, XY = YX.

On dit qu’une sous-algèbre A de Mn(R) est un corps si ∀X ∈A \ {0}, X est inversible et X−1 ∈A .

Enfin, on note classiquement GLn(R) l’ensemble des matrices inversibles de Mn(R) et Xi , j les coefficients
d’une matrice X.

Partie I – Quelques exemples élémentaires

On note Sn(R) (resp. T +
n (R), Hn(R)) l’ensemble des matrices symétriques (resp. triangulaires supérieures,

de trace nulle) de Mn(R).

1. Les ensembles suivants sont-ils des sous-algèbres de Mn(R) : Hn(R), T +
n (R), GLn(R) et Sn(R) ? On

justifiera avec soin par une démonstration ou un contre-exemple.

2. Soit U ∈Mn(R) vérifiant ∀(i , j ) ∈ �1,n�2, Ui , j = 1. On s’intéresse à A = {
aIn +bU ; (a,b) ∈R2 }

.

a. Montrer que A est une sous-algèbre de Mn(R). Est-elle commutative ?

b. Soit (a,b) ∈R2 et M = aIn +bU. Donner une condition nécessaire et suffisante sur a et b pour que
M soit inversible. Calculer l’inverse M le cas échéant et vérifier qu’elle appartient à A .

c. Résoudre dans A l’équation Xn = In d’inconnue X.

Partie II – Sous-algèbre des matrices centro-symétriques

On dit qu’une matrice A = (Ai , j )1⩽i , j⩽n ∈Mn(R) est centro-symétrique si

∀(i , j ) ∈ �1,n�2, an+1−i ,n+1− j = ai , j

On note CS l’ensemble des matrices centro-symétriques de Mn(R).

1. Déterminer les matrices centro-symétriques de M2(R) puis de M3(R).

2. Établir que CS est une sous-algèbre de Mn(R) en revenant aux définitions des opérations matricielles.

3. Déterminer une matrice P inversible telle que CS = {
X ∈Mn(R) ; PXP = X

}
.

4. Reprendre la question II.2. en utilisant la question précédente.

5. Démontrer que, pour tout A ∈ GLn(R)∩CS , on a A−1 ∈CS .
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Partie III – Quelques résultats sur les sous-algèbres de M2(R)

1. Existe-t-il des sous-algèbres de M2(R) qui ne sont pas des corps ?

2. Démontrer que ∀A ∈M2(R), A2 − tr(A)A+det(A)I2 = 0.

3. Soit A une sous-algèbre de M2(R). Démontrer que ∀A ∈A ∩GL2(R), A−1 ∈A .

4. On note C =
{(

a b
−b a

)
; (a,b) ∈R2

}
.

a. Montrer que C est une sous-algèbre de M2(R). Est-elle commutative ?

b. Établir que C est isomorphe àC, c’est-à-dire qu’il existe une bijection φ :C→C telle que

∀(λ, z, z ′) ∈R×C2, φ(zz ′) =φ(z)φ(z ′) et φ(z +λz ′) =φ(z)+λφ(z ′)

c. La sous-algèbre C est-elle un corps ?

LLG . HX 6 8
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VI. Indications

1 �

Appliquer l’algorithme du pivot en repoussant au plus tard possible la disjonction de cas.

2 �

Échelonnez les systèmes. Essayez de commencer à discuter sur m le plus tard possible.

3 �

La résolution du second système passe par une discussion sur la parité de n.

4 �

On trouve une matrice colinéaire à J.

5 �

Calculer les coefficients diagonaux de la matrice AAT en fonction de ceux de A.

6 �

Remarquer qu’une solution X commute avec A.

7 �

Penser à prendre la trace. Il faut discuter selon les valeurs de tr A et tr B.

8 �

Appliquer la formule du binôme.

9 �

Au a), on pourra deviner la formule et la montrer par récurrence. Au b), on a Ma,b = (a−b)In+bU ; appliquer
ensuite la formule du binôme, en mettant à part le terme avec U0.

10 �

Au 4., on pourra remarquer que si X est solution, alors X commute avec A.

11 �

On trouve M = In +J+ . . .+Jn−1. La formule de la série géométrique surC devrait alors vous inspirer sachant
que Jn = 0n .
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12 �

Remarquer que Ma = (In − J)−1 (In − (1−a)J).

13 �

Factoriser par (In +A)−1 dans In +B.

14 �

Écrire B = PA avec P matrice élémentaire de permutation.

15 �

On trouve ΩΩ= nIn .

16 �

Appliquez la méthode du pivot à (A|In).

17 �

La condition sur la somme des lignes peut s’écrire AU = U pour une certaine matrice-colonne U.

18 �

On a clairement Tq ⊂Tp .

19 �

Multiplier à droite (resp. à gauche) par une matrice diagonale revient à dilater les lignes (resp. les colonnes).

20 �

On trouve les matrices d’homothéties, ie de la forme λIn , λ ∈R.

21 �

Au I.2., on remarquera que M2 − (2a +bn)M =−(
a2 +nba

)
In .

LLG . HX 6 10


	Calcul matriciel
	Systèmes linéaires
	Calculs divers
	Matrices inversibles
	Matrices remarquabes
	Problèmes
	Indications
	Solutions


