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Dieu a utilisé les mathématiques pour créer le monde.
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2025-2026 Laurent Kaczmarek

I. Parties d’'un ensemble fini

0@ Cardinalogie

Soit E un ensemble de cardinal 100, A et B des parties de E telles que |1_\r1§| =60et|A] =15.

Déterminer |[B\ A|.

Q® Compter des parties f

Soient un ensemble E a n éléments, et A une partie de E a p éléments (avec n, p € IN tels que p < n).

1. Quel est le nombre de parties de E qui contiennent un et un seul élément de A?
2. Quel estle nombre de parties de E qui contiennent au plus un élément de A?

3. Quel estle nombre de parties de E qui contiennent au moins un élément de A?

Q® X PC-2007 et Mines-Ponts PSI-2007 ff

Soit E un ensemble de cardinal n et (A, B) € 22(E).
1. Déterminer le nombre de X € Z2(E) telles que AnX =B.

2. Méme question avec AUX = B.

n Q® Parties emboitées ff

Soit E un ensemble fini de cardinal n € IN.
1. Déterminer le nombre de couples (A, B) de parties de E tels que A c B.

2. Soit p € N*. Combien existe-t-il de familles (Ay,...,A)) € Z(E)P tellesque Ajc Ay c---c Ay ?

o® Paires de parties sous contrainte ff

Soit E un ensemble a n éléments, ou n € IN*. On va dénombrer des parties de E sur lesquelles on posera
certaines contraintes.

1. Déterminer le nombre de couples (X,Y) telsque XNY = 2.
2. Déterminer le nombre de couples (X,Y) tels que XUY =E.
3. Déterminer le nombre de couples (X,Y) tels que (X,Y) forment une partition de E.

4. Déterminer le nombre de triplets (X,Y,Z) tels que XUY =Z.
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a 0@ Parties s’intersectant en un seul point ff

Soit E un ensemble de cardinal n. Dénombrer les couples (X,Y) € 22(E)? tels que X NY soit un singleton.

Q@ Sommes fff
Soit ne N*. Calculer ) ) k.

Xcl[1,n] keX
a Q® Le lemme de Sperner fff

Soit n € IN*. On appelle antichaine de [1, ] toute partie «/ de £ ([1, n]) telle que

V(A,B)e %, A£B = (A¢B et B£A)
. - . . n
1. Soit £ € [0, n]. Etablir avec soin que ( <

<)

2. Soit k € [0, n]. Lensemble <} des parties de [1, n] de cardinal k est-il une antichaine de [1, n] ?

3. Dans cette question, on fixe une antichaine « de [1, n]. Pour tout A € &/, on note Q4 'ensemble des
permutations o de [1, n] qui induisent une bijection de [1, €] sur A, ou £ :=|Al.

a. Soit A € &/. Donner I'expression de |Qa| en fonction de n et £ := |A].
b. Soit (A,B) € «#? tel que A # B. Etablir que Qp N Qg = .
c. Pour £ € [1, n], on note ay le nombre d’éléments de «f de cardinal £. Justifier que

n
Y agll(n-0!< n!
(=1

d. En déduire que | /| <

s S
N —

II. Applications entre ensembles finis

a Q@ Apprendre a compter f

Soient n € IN* et m € IN*. Déterminer le nombre :

1. d’applications d’'un ensemble a m éléments vers un ensemble a n élements;
2. de bijections entre deux ensembles a n éléments;
3. d’injections d'un ensemble a n — 1 éléments dans un ensemble a n éléments;

4. de surjections d'un ensemble a n éléments sur un ensemble a n — 1 éléments.
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10 JeEO Surjections ff

Pour n, m dans N*, on note S, ,, le nombre de surjections de [1, n] sur [1, m].

1. Justifier que S, ;; est le nombre de surjections de E dans F ou E et F sont des ensembles quelconques
de cardinaux respectifs n et m.

2. Quevaut S, , pour ne N*?QuevautS, ,,sil<n<m?
3. Soit ne N* et me IN tel que m > 2.
a. Dénombrer les surjections f: [1,n+ 1] — [1, m] telles que 3¢ € [1,n], f(n+1) = f(a).
INDICATION : On exprimera le résultat en fonctions des S; ;.

b. En déduire que S,41,m = m(Snm+Snm-1)-

11 [ Applications idempotentes d’'un ensemble fini fff

Soit E un ensemble fini non vide et p : E — E une application. On dit que p est idempotente si po p = p.
1. a. Montrer que si p est idempotente et injective alors p = idg.
b. Montrer que si p estidempotente et surjective alors p = idg.
c. Donner un exemple d’application idempotente de [1,2] distincte de I'identité.
2. Déterminer sans justification les applications idempotentes de [0, 2].

3. Soit n:=|E|. Dénombrer les applications idempotentes de E.

INDICATION : Remarquer que I'idempotence de p équivaut a la propriété Vx € p(E), p(x) = x. On trou-
vera une somme qu’'on ne cherchera pas a simplifier.

12 [eXO Surjections fff

Soit n € IN* et p e IN* tels que p > n. Calculer le nombre de surjections de [1, n] dans [1, p] en appliquant la
formule d’inclusion-exclusion.

On pourra considérer, pour tout i € [1, p], 'ensemble S; := {f: [1,n] — [1,pl; Vxell,n], f(x) # i}.

III. Listes et combinaisons

13 §XS Histoires de chiffres

Soit E 'ensemble des nombres admettant 7 chiffres en base 10 et ne comportant aucun 0 : par exemple, le
plus petit et le plus grand de ces nombres sont respectivement 1111111 et 9999999.

1. Déterminer le cardinal de E.
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2. Déterminer le cardinal de E, la partie de E constituée des nombres ayant 7 chiffres différents.
3. Déterminer le cardinal de Ej, la partie de E constituée des nombres pairs.

4. Déterminer le cardinal de E3, la partie de E constituée des nombres dont la suite des chiffres (de gauche
a droite) est strictement croissante (comme par exemple 2456789 ou encore 1345689).

14 Ko} Mains au jeu de cartes f

Un jeu comporte 32 cartes (8 par couleurs, 4 couleurs). Une main est constituée de 8 cartes sans ordre.
1. Quel est le nombre de mains possibles ?
2. Combien de mains contiennent les 4 as ?
3. Combien de mains contiennent au moins un cceur ou une dame ?

Combien de mains ne contiennent pas plus de deux couleurs ?

Combien de mains contiennent exactement 4 trefles dont la dame ?

Combien de mains ne contiennent pas de coeur ?

N o oe

Combien de mains contiennent au plus 3 carreaux ?

15 RO Parties de cardinal pair f

Soit E un ensemble de cardinal n € IN* et a € E. On pose ¢ : Z(E) — Z2(E) définie par ¢(X) = XA{a}. On note
P, (E) (resp. Z,(E)) 'ensemble des parties de E de cardinal pair (resp. impair).

1. Calculer ¢p o ¢ et en déduire que P est une bijection.
2. Etablir que ¢p(Z,(E)) = P, (E) puis calculer |2, (E)| et |2, (E)|.

3. Retrouver le résultat de la question précédente en appliquant la formule du binome.

16 KO Dénombrement de couples d’entiers f

Soit n € IN*. Combien existe-t-il de couples (x, y) :

1. de [1, n]? tels quex+y=n? 3. de[l,n] x[1,2n] telsque x< y?
2. de[1,n]* telsque x< y ? 4. de[1,n]%telsque [x—y| <12
17 §KS Répartitions en ligne ou en cercle f

De combien de facons différentes peut-on disposer n hommes et n femmes :
1. Sur un banc contenant 2n places ?

2. Autour d’'une table ronde de 2n places ?
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3. Reprendre les questions précédentes en supposant dans les deux cas que hommes et femmes sont ré-
partis de maniere alternée.

18 [9XO) Cardinal des sphéres de Z."* pour la norme infinie f

Soit (1, p) € (N*)%. On note E,, , := {(x1,...,%,) € Z"; max (|x1},...,1x,1) = p}.
1. Déterminer |E; ,| pour p € IN*. Déterminer |E »|.
2. Soit n€ IN*. Montrer que |[E,, ;| =3" - 1.
3. Montrer que, pourn>1letp>2, E,p,=[-p,p]"\[1-p,p—1]" et en déduire |Ey, |.

4. Déterminer une constante A > 0 telle que |[E, ,| ~ A(2n)".

19 [eXO Parties de diameétre fixé ff

Soit n € IN*. Si A c [1, n] est une partie non vide, on définit son diametre :
diamA :=maxA—min A

1. Quelles sont les parties de [1, n] de diamétre 0 2 Méme question avec 1 ?
2. Quelles sont les parties de [1, n] de diametre n—1 ?

3. Soit k € IN. Déterminer le nombre de parties de [1, n] de diametre k.

20 S Sommes de cardinaux ff

Soit E un ensemble de cardinal n.

1. Onpose o := Z |Al.
AEZP(E)

a. Calculer o en sommant par paquets de parties A de E de méme cardinal k € [0, n].

b. Calculer o en intervertissant les sommes dans la relation suivante que 'on justifiera

o= Y Y 1r()

AeP(E) x€E

2. Exprimer v := Z |A N B| en fonction de n.
(AB)eP (E)?

21 j XS Permutations sans points fixes (sans Pascal ni Poincaré) fff

Soit n € IN*. Pour k € [0, n], on note p,(k) le nombre d’éléments de &,, admettant exactement k points
fixes.

n
1. Justifier que n!=)_ p,(k).
k=0
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n

2. Soit k € [0, n]. Etablir que pj, (k) = (k

)pn—k(o)-

n (_l)k
— K

n
3. En déduire que n!= ) _ (Z) pi(0) puis que p,(0) = n!
k=0 k

IV. Relations de récurrence

22 NEO Mots binaires ne contenant pas le facteur 00 f

Pour tout n € IN*, on note u, le nombre de (xy,...,x,) € {0,1}" tel que Vi € [1, n—1], x; et x;4+; ne sont jamais
simultanément nuls. On conviendra que u; = 2. Montrer que u;, = u,_1 + U,—2 pour tout n > 3.

23 KO Partitions en p parties ff

Pour n et p dans IN*, on note p,, , le nombre de partitions de [1, ] en p parties.
p Pn,p p pp

n+1
1. Montrer que pour tout n € IN*, py41,, = ( ) )
2. Calculer, pour tout n€ N*, py».
3. Montrer que pour tout n et p dans N*, on a Pn+1,p+1 =Pnp+ (P +1)pnp+1-

INDICATION : on pourra distinguer parmi les partitions de [1, n+1] en p+1 parties, celles qui contiennent
le singleton {n + 1} et celles qui ne le contiennent pas.
37214

4. Montrer que pour tout n€ N*, p,413 = >

24 RXO) Involutions de [1,n] fff

Soit n € IN*. On appelle involution de [1, n] tout élément ¢ de &([1, n]) tel que 62 = idj1 ;. On note u, le
nombre d’'involutions de [1, n].

1. Calculer u;, u, et us.

2. Montrer que, pour tout n € IN*, w42 = U1+ (n+ Duy.

25 QXS Nombre de partitions fff

Pour tout 7 € IN, on note p,, le nombre de partitions d'un ensemble de cardinal 7. Etablir que

LN 7]
VnelN, pp1 =), |
k=0
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V. Probleme

26 XS Partitions d’'un ensemble fini ff- fff

Soit E un ensemble fini non vide. Pour tout entier k € IN*, on dit que {A;,..., Ay} est une partition de E en k
classessi:

B) Vie[l,kl, A; # o; C) VY, j) € I1, k%,

k
A) JAi=E; i#j= AinAj=0.

i=1

Une partie .# de &?(E) est appelée partition de E s'il existe k € IN* tel que .# soit une partition de E en k
classes.

Par exemple, on dénombre 5 partitions de E = [1,3] :

{11}, {2}, 31} {11,2}, 81}, {{1,3}, {21}, {{2,3}, {1}}
—_—— ~ ~ ~
une partition en 3 classes trois partitions en 2 classes
{11,2,31}
——

une partition en 1 classe

Partie I — Partitions dans le cas général — Lien avec les surjections

Dans cette partie, on suppose que #E = n. On note r(n) le nombre de partitions de E avec la convention
r(0) = 1. Pour tout k € IN*, on note r(n, k) le nombre de partitions de E en k classes.
1. Montrer que V(k,n) € (IN*)?, k>n = r(n, k) =0.

n

2. Montrer que Yne N*, r(n) = )_ r(n,k).
k=1

" [n
3. Montrer que YneN, r(n+1)=)_ (k)r(k).
k=0
On pourra fixer un élément particulier a d'un ensemble E de cardinal n + 1 et construire une partition
de E en commencant par choisir la partie qui contient a.

4. Calculer r(n) pour n € [1,6].

5. Montrer que Vne N, r(n) < n'".
On pourra procéder par récurrence en utilisant la question 3).

6. Montrer que Vn >5, r(n) > 2"

7. On note S, ; le nombre de surjections d'un ensemble a n éléments sur un ensemble a k éléments.
Montrer que V(k, n) € (IN*)?, Snk=Kklr(n, k).

LLG € HX6 8
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Partie II - Partitions en paires

On suppose que #E = 2m, avec m > 1. On note a,, le nombre de partitions de E en m classes qui sont
des paires.

1. Déterminer a, a et as. Par convention, on pose ag = 1.

2. Montrerque Vme N*, a,,=2m-1)a; ;.
Pour cela, on fixera un élément particulier a de E et on construira une partition de E en paires en choi-
sissant d’abord la paire contenant a.
2m)!

3. En déduire que a,, = il

Partie III - Partitions en paires et singletons — Involutions

On suppose que #E = n, avec n > 1. On note b, le nombre de partitions de E en classes qui sont des paires
ou des singletons.

1. Déerminer by, bs, bs et by.

m 2m
2. On suppose que n =2m avec m € IN*. Montrer que b, = Z ok A
k=0

On pourra classer les partitions suivant le nombre de singletons qu’elles contiennent.

k-

3. Montrerque Vn >3, b,=by_1+n—-1)b,_s.
4. Calculer by, pour n€ [1,5].
5. Soit n € IN*. Calculer le nombre d’applications f : [1,n] — [1, n] telles que fo f =idy, ..

7 © @ Dérangements d’'un ensemble de cardinal n

Pour n € IN*, on note D,, le nombre de permutations de [1, n] sans point fixe. On pose Dy = 1.

Ce probléme expose trois méthodes de calcul de Dy,.

Partie I — Premier calcul : par la formule du crible

Pour tout i € [1, n], on note E; '’ensemble des permutations o de [1, n] telles que o (i) = i.
1. Ecrire 'ensemble E des permutations de [1, n] sans point fixe au moyen des E;.

2. Calculer D, en utilisant la formule du crible.

LLG € HX6 9



2025-2026 Laurent Kaczmarek

Partie II — Deuxieme calcul : par une série génératrice
e—x

1-x

1. Justifier que f est de classe ¥ et, au moyen de la formule de Leibniz, établir que

Pour tout x €] —1,1[, on pose f(x) :=

VnelN, Z (Z)f(k)(o) =n!

k=0

n
2. Montrer que, pour tout n€ N, n!= Z
k=0

n
Dy..

3. En déduire que, pour tout n€ IN, D,, = £f"(0).

n _1 k
4. Démontrer que Vne N, D, = n! Z St
i=o K

Partie III - Troisieme méthode : par une relation de récurrence

1. Calculer Dy, D5 et Ds.

2. Etablir que, pour tout n > 2, D, = (n—1)(D,_; + D,_»). Pour une permutation o de [1, 7] sans point
fixe, on pourra considérer k = o(n) et discuter suivant la valeur de o (k).

3. Montrer que, pour tout n € IN*, D,, = nD,,_; + (-1)".

n (_l)k

4. En déduire que, pour tout n € IN*, D,, = n! Z i
k=0 :

n _ 1 k
5. Par une formule de Taylor, montrer que Z =D
=0 k! n—+oo

e~ !. En déduire un équivalent de D,,.

LLG € HX6 10
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VI. Indications

(1 )

Faire une figure.

8-

On trouve p2""™P, (p+1)2" P et 2" -2"7P,

8 -

Commencer par esquisser des patates.

a-

On trouve 3" couples au 1. et (p +1)" au 2. On pourra par exemple utiliser les fonctions indicatrices.

8 -

On trouve 3", 3", 2" -2 et 4™.

0 -

Construire une solution (X,Y) « point par point ».

8 -

Pour k € [1, n], combien dénombre-t-on de X  [1, n] tels que k € X ?

B -

AU 3.b., on pourra se ramener au cas ol |A| <|B| et raisonner par I’absurde.

B -

C’est du cours aux a), b) et ¢) : n'", n!, n!. On trouve n!(n—1)/2 au c).

(10

Pour la relation du 3., construire une application surjective f : [1,n+ 1] — [1, m] en distinguant deux cas :
f(1) a pour unique antécédent 1 ou admet au moins deux antécédents.

o -

Au 3., on pourra construire p en choisissant d’abord son image p(E) puis en définissant p(x) pour tout
x € E.

o -

LLG € HX6 11
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P
Remarquer que & = | JS;.

i=1
(13 )

Ce sont des calculs tres proches du cours. Utiliser le lemme des bergers.

o -

Au 3., il est judicieux de passer au complémentaire.

o -

On a bien-sar

2| = \Z\ (z];c) et [P = ) (Zkrz-l)

0<L2k+1<n

et voir le cours pour la suite.

o -

On peut décrire géométriquement les différents ensembles afin de se forger une intuition.

@ -

Dans le cas des bancs, les places sont distinguables, ce qui n’est pas le cas dans le cas de la table.

o -

On trouve A := /e — ﬁ avec un peu d’asymptotique.

o -

Au 3., on pourra construire une partie de diameétre k en choisissant d’abord son maximum M (son minimum
sera alors nécessairement M — k) puis en complétant la paire {M — k, M}.

o I

Pour x fixé dans E, } e ) 1a(x) estle nombre de parties de E contenant I'élément x (cf. I'exercice 2).

o -

Raisonner par récurrence a la derniére question.

e -

C’est un exemple tres proche du cours : effectuer une disjonction de cas selon la valeur de x,,.

e -

On trouve p,» =2""1 - 1.

LLG € HX 6 12
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i I

Au 2., construire une involution o de [1, n+2] en considérant deux cas: c(n+2) =n+2eto(n+2) € [1,n+1].

B -

Il s’agit de compter les partitions de [1, 7+ 1]. On pourra commencer par construire la partie A contenant 1
puis partitionner [1,7+ 1] \ A.

ea-

Au 1.3., on pourra fixer a dans E puis construire une partition de E en commencant par la partie qui contient
a.

e -

n
Ona&,\E=JE;.
i=1

LLG € HX6 13
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