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Dieu a utilisé les mathématiques pour créer le monde.

Paul Dirac

Le dieu géomètre, Codex Vindobonensis
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I. Parties d’un ensemble fini

1 � 4 Cardinalogie

Soit E un ensemble de cardinal 100, A et B des parties de E telles que
∣∣A∩B

∣∣= 60 et |A| = 15.

Déterminer |B \ A|.

2 � 4 Compter des parties f

Soient un ensemble E à n éléments, et A une partie de E à p éléments (avec n, p ∈N tels que p ⩽ n).

1. Quel est le nombre de parties de E qui contiennent un et un seul élément de A?

2. Quel est le nombre de parties de E qui contiennent au plus un élément de A?

3. Quel est le nombre de parties de E qui contiennent au moins un élément de A?

3 � 4 X PC-2007 et Mines-Ponts PSI-2007 ff

Soit E un ensemble de cardinal n et (A,B) ∈P (E)2.

1. Déterminer le nombre de X ∈P (E) telles que A∩X = B.

2. Même question avec A∪X = B.

4 � 4 Parties emboîtées ff

Soit E un ensemble fini de cardinal n ∈N.

1. Déterminer le nombre de couples (A,B) de parties de E tels que A ⊂ B.

2. Soit p ∈N∗. Combien existe-t-il de familles (A1, . . . , Ap ) ∈P(E)p telles que A1 ⊂ A2 ⊂ ·· · ⊂ Ap ?

5 � 4 Paires de parties sous contrainte ff

Soit E un ensemble à n éléments, où n ∈N∗. On va dénombrer des parties de E sur lesquelles on posera
certaines contraintes.

1. Déterminer le nombre de couples (X,Y) tels que X∩Y =∅.

2. Déterminer le nombre de couples (X,Y) tels que X∪Y = E.

3. Déterminer le nombre de couples (X,Y) tels que (X,Y) forment une partition de E.

4. Déterminer le nombre de triplets (X,Y,Z) tels que X∪Y = Z.
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6 � 4 Parties s’intersectant en un seul point ff

Soit E un ensemble de cardinal n. Dénombrer les couples (X,Y) ∈P (E)2 tels que X∩Y soit un singleton.

7 � 4 Sommes fff

Soit n ∈N∗. Calculer
∑

X⊂�1,n�

∑
k∈X

k.

8 � 4 Le lemme de Sperner fff

Soit n ∈N∗. On appelle antichaîne de �1,n� toute partie A de P (�1,n�) telle que

∀(A,B) ∈A 2 , A ̸= B =⇒ (A ̸⊂ B et B ̸⊂ A)

1. Soit ℓ ∈ �0,n�. Établir avec soin que

(
n

ℓ

)
⩽

(
n⌊n
2

∣∣
)

.

2. Soit k ∈ �0,n�. L’ensemble Ak des parties de �1,n� de cardinal k est-il une antichaîne de �1,n� ?

3. Dans cette question, on fixe une antichaîne A de �1,n�. Pour tout A ∈ A , on note ΩA l’ensemble des
permutations σ de �1,n� qui induisent une bijection de �1,ℓ� sur A, où ℓ := |A|.
a. Soit A ∈A . Donner l’expression de |ΩA| en fonction de n et ℓ := |A|.
b. Soit (A,B) ∈A 2 tel que A ̸= B. Établir que ΩA ∩ΩB =∅.

c. Pour ℓ ∈ �1,n�, on note aℓ le nombre d’éléments de A de cardinal ℓ. Justifier que

n∑
ℓ=1

aℓ ℓ! (n −ℓ)! ⩽ n!

d. En déduire que |A | ⩽
(

n⌊n
2

∣∣
)

.

II. Applications entre ensembles finis

9 � 4 Apprendre à compter f

Soient n ∈N∗ et m ∈N∗. Déterminer le nombre :

1. d’applications d’un ensemble à m éléments vers un ensemble à n élements ;

2. de bijections entre deux ensembles à n éléments ;

3. d’injections d’un ensemble à n −1 éléments dans un ensemble à n éléments ;

4. de surjections d’un ensemble à n éléments sur un ensemble à n −1 éléments.
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10 � 4 Surjections ff

Pour n, m dansN∗, on note Sn,m le nombre de surjections de �1,n� sur �1,m�.

1. Justifier que Sn,m est le nombre de surjections de E dans F où E et F sont des ensembles quelconques
de cardinaux respectifs n et m.

2. Que vaut Sn,n pour n ∈N∗ ? Que vaut Sn,m si 1⩽ n < m ?

3. Soit n ∈N∗ et m ∈N tel que m ⩾ 2.

a. Dénombrer les surjections f : �1,n +1�→ �1,m� telles que ∃ℓ ∈ �1,n�, f (n +1) = f (a).

INDICATION : On exprimera le résultat en fonctions des Si , j .

b. En déduire que Sn+1,m = m
(
Sn,m +Sn,m−1

)
.

11 � 4 Applications idempotentes d’un ensemble fini fff

Soit E un ensemble fini non vide et p : E → E une application. On dit que p est idempotente si p ◦p = p.

1. a. Montrer que si p est idempotente et injective alors p = idE.

b. Montrer que si p est idempotente et surjective alors p = idE.

c. Donner un exemple d’application idempotente de �1,2� distincte de l’identité.

2. Déterminer sans justification les applications idempotentes de �0,2�.

3. Soit n := |E|. Dénombrer les applications idempotentes de E.

INDICATION : Remarquer que l’idempotence de p équivaut à la propriété ∀x ∈ p(E), p(x) = x. On trou-
vera une somme qu’on ne cherchera pas à simplifier.

12 � 4 Surjections fff

Soit n ∈N∗ et p ∈N∗ tels que p ⩾ n. Calculer le nombre de surjections de �1,n� dans �1, p� en appliquant la
formule d’inclusion-exclusion.

On pourra considérer, pour tout i ∈ �1, p�, l’ensemble Si :=
{

f : �1,n�→ �1, p� ; ∀x ∈ �1,n�, f (x) ̸= i
}

.

III. Listes et combinaisons

13 � 4 Histoires de chiffres

Soit E l’ensemble des nombres admettant 7 chiffres en base 10 et ne comportant aucun 0 : par exemple, le
plus petit et le plus grand de ces nombres sont respectivement 1111111 et 9999999.

1. Déterminer le cardinal de E.
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2. Déterminer le cardinal de E1, la partie de E constituée des nombres ayant 7 chiffres différents.

3. Déterminer le cardinal de E2, la partie de E constituée des nombres pairs.

4. Déterminer le cardinal de E3, la partie de E constituée des nombres dont la suite des chiffres (de gauche
à droite) est strictement croissante (comme par exemple 2456789 ou encore 1345689).

14 � 4 Mains au jeu de cartes f

Un jeu comporte 32 cartes (8 par couleurs, 4 couleurs). Une main est constituée de 8 cartes sans ordre.

1. Quel est le nombre de mains possibles ?

2. Combien de mains contiennent les 4 as ?

3. Combien de mains contiennent au moins un cœur ou une dame ?

4. Combien de mains ne contiennent pas plus de deux couleurs ?

5. Combien de mains contiennent exactement 4 trèfles dont la dame ?

6. Combien de mains ne contiennent pas de cœur ?

7. Combien de mains contiennent au plus 3 carreaux ?

15 � 4 Parties de cardinal pair f

Soit E un ensemble de cardinal n ∈N∗ et a ∈ E. On pose φ : P (E) →P (E) définie par φ(X) = X∆{a}. On note
Pe (E) (resp. Po(E)) l’ensemble des parties de E de cardinal pair (resp. impair).

1. Calculer φ◦φ et en déduire que φ est une bijection.

2. Établir que φ
〈
Pe (E)

〉=Po(E) puis calculer
∣∣Pe (E)

∣∣ et
∣∣Po(E)

∣∣.
3. Retrouver le résultat de la question précédente en appliquant la formule du binôme.

16 � 4 Dénombrement de couples d’entiers f

Soit n ∈N∗. Combien existe-t-il de couples (x, y) :

1. de �1,n�2 tels que x + y = n ?

2. de �1,n�2 tels que x < y ?

3. de �1,n�×�1,2n� tels que x < y ?

4. de �1,n�2 tels que |x − y |⩽ 1 ?

17 � 4 Répartitions en ligne ou en cercle f

De combien de façons différentes peut-on disposer n hommes et n femmes :

1. Sur un banc contenant 2n places ?

2. Autour d’une table ronde de 2n places ?
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3. Reprendre les questions précédentes en supposant dans les deux cas que hommes et femmes sont ré-
partis de manière alternée.

18 � 4 Cardinal des sphères deZn pour la norme infinie f

Soit (n, p) ∈ (N∗)2. On note En,p := {
(x1, . . . , xn) ∈Zn ; max( |x1|, . . . , |xn | ) = p

}
.

1. Déterminer |E1,p | pour p ∈N∗. Déterminer |E2,2|.
2. Soit n ∈N∗. Montrer que |En,1| = 3n −1.

3. Montrer que, pour n ⩾ 1 et p ⩾ 2, En,p = �−p, p
�n \

�
1−p, p −1

�n et en déduire |En,p |.
4. Déterminer une constante λ> 0 telle que |En,n | ∼ λ(2n)n .

19 � 4 Parties de diamètre fixé ff

Soit n ∈N∗. Si A ⊂ �1,n� est une partie non vide, on définit son diamètre :

diam A := max A−min A

1. Quelles sont les parties de �1,n� de diamètre 0 ? Même question avec 1 ?

2. Quelles sont les parties de �1,n� de diamètre n −1 ?

3. Soit k ∈N. Déterminer le nombre de parties de �1,n� de diamètre k.

20 � 4 Sommes de cardinaux ff

Soit E un ensemble de cardinal n.

1. On pose σ := ∑
A∈P (E)

|A|.

a. Calculer σ en sommant par paquets de parties A de E de même cardinal k ∈ �0,n�.

b. Calculer σ en intervertissant les sommes dans la relation suivante que l’on justifiera

σ = ∑
A∈P (E)

∑
x∈E
1A(x)

2. Exprimer ν := ∑
(A,B)∈P (E)2

|A∩B| en fonction de n.

21 � 4 Permutations sans points fixes (sans Pascal ni Poincaré) fff

Soit n ∈ N∗. Pour k ∈ �0,n�, on note pn(k) le nombre d’éléments de Sn admettant exactement k points
fixes.

1. Justifier que n! =
n∑

k=0
pn(k).
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2. Soit k ∈ �0,n�. Établir que pn(k) =
(

n

k

)
pn−k (0).

3. En déduire que n! =
n∑

k=0

(
n

k

)
pk (0) puis que pn(0) = n!

n∑
k=0

(−1)k

k !
·

IV. Relations de récurrence

22 � 4 Mots binaires ne contenant pas le facteur 00 f

Pour tout n ∈N∗, on note un le nombre de (x1, . . . , xn) ∈ {0,1}n tel que ∀i ∈ �1,n−1�, xi et xi+1 ne sont jamais
simultanément nuls. On conviendra que u1 = 2. Montrer que un = un−1 +un−2 pour tout n ⩾ 3.

23 � 4 Partitions en p parties ff

Pour n et p dansN∗, on note ρn,p le nombre de partitions de �1,n� en p parties.

1. Montrer que pour tout n ∈N∗, ρn+1,n =
(

n +1

2

)
.

2. Calculer, pour tout n ∈N∗, ρn,2.

3. Montrer que pour tout n et p dansN∗, on a ρn+1,p+1 = ρn,p + (p +1)ρn,p+1.

INDICATION : on pourra distinguer parmi les partitions de �1,n+1� en p+1 parties, celles qui contiennent
le singleton {n +1} et celles qui ne le contiennent pas.

4. Montrer que pour tout n ∈N∗, ρn+1,3 = 3n −2n+1 +1

2
·

24 � 4 Involutions de �1,n� fff

Soit n ∈N∗. On appelle involution de �1,n� tout élément σ de S(�1,n�) tel que σ2 = id�1,n�. On note un le
nombre d’involutions de �1,n�.

1. Calculer u1, u2 et u3.

2. Montrer que, pour tout n ∈N∗, un+2 = un+1 + (n +1)un .

25 � 4 Nombre de partitions fff

Pour tout n ∈N, on note ρn le nombre de partitions d’un ensemble de cardinal n. Établir que

∀n ∈N, ρn+1 =
n∑

k=0

(
n

k

)
ρk

LLG . HX 6 7
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V. Problème

26 � 4 Partitions d’un ensemble fini ff – fff

Soit E un ensemble fini non vide. Pour tout entier k ∈N∗, on dit que {A1, . . . , Ak } est une partition de E en k
classes si :

A)
k⋃

i=1
Ai = E ;

B) ∀i ∈ �1,k�, Ai ̸=∅ ; C) ∀(i , j ) ∈ �1,k�2,
i ̸= j =⇒ Ai ∩A j =∅.

Une partie M de P(E) est appelée partition de E s’il existe k ∈N∗ tel que M soit une partition de E en k
classes.

Par exemple, on dénombre 5 partitions de E = �1,3� :{
{1} , {2} , {3}

}︸ ︷︷ ︸
une partition en 3 classes

{
{1,2} , {3}

}
,

{
{1,3} , {2}

}
,

{
{2,3} , {1}

}︸ ︷︷ ︸
trois partitions en 2 classes{

{1,2,3}
}︸ ︷︷ ︸

une partition en 1 classe

Partie I – Partitions dans le cas général – Lien avec les surjections

Dans cette partie, on suppose que #E = n. On note r (n) le nombre de partitions de E avec la convention
r (0) = 1. Pour tout k ∈N∗, on note r (n,k) le nombre de partitions de E en k classes.

1. Montrer que ∀(k,n) ∈ (N∗)2 , k > n =⇒ r (n,k) = 0.

2. Montrer que ∀n ∈N∗ , r (n) =
n∑

k=1
r (n,k).

3. Montrer que ∀n ∈N, r (n +1) =
n∑

k=0

(
n

k

)
r (k).

On pourra fixer un élément particulier a d’un ensemble E de cardinal n +1 et construire une partition
de E en commençant par choisir la partie qui contient a.

4. Calculer r (n) pour n ∈ �1,6�.

5. Montrer que ∀n ∈N, r (n)⩽ nn .
On pourra procéder par récurrence en utilisant la question 3).

6. Montrer que ∀n ⩾ 5, r (n)⩾ 2n .

7. On note Sn,k le nombre de surjections d’un ensemble à n éléments sur un ensemble à k éléments.
Montrer que ∀(k,n) ∈ (N∗)2, Sn,k = k !r (n,k).

LLG . HX 6 8
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Partie II – Partitions en paires

On suppose que #E = 2m, avec m ⩾ 1. On note am le nombre de partitions de E en m classes qui sont
des paires.

1. Déterminer a1, a2 et a3. Par convention, on pose a0 = 1.

2. Montrer que ∀m ∈N∗ , am = (2m −1)am−1.
Pour cela, on fixera un élément particulier a de E et on construira une partition de E en paires en choi-
sissant d’abord la paire contenant a.

3. En déduire que am = (2m)!

2mm!
.

Partie III – Partitions en paires et singletons – Involutions

On suppose que #E = n, avec n ⩾ 1. On note bn le nombre de partitions de E en classes qui sont des paires
ou des singletons.

1. Déerminer b1, b2, b3 et b4.

2. On suppose que n = 2m avec m ∈N∗. Montrer que b2m =
m∑

k=0

(
2m

2k

)
am−k .

On pourra classer les partitions suivant le nombre de singletons qu’elles contiennent.

3. Montrer que ∀n ⩾ 3 , bn = bn−1 + (n −1)bn−2.

4. Calculer bn , pour n ∈ �1,5�.

5. Soit n ∈N∗. Calculer le nombre d’applications f : �1,n�→ �1,n� telles que f ◦ f = id�1,n�.

27 � 4 Dérangements d’un ensemble de cardinal n

Pour n ∈N∗, on note Dn le nombre de permutations de �1,n� sans point fixe. On pose D0 = 1.

Ce problème expose trois méthodes de calcul de Dn .

Partie I – Premier calcul : par la formule du crible

Pour tout i ∈ �1,n�, on note Ei l’ensemble des permutations σ de �1,n� telles que σ(i ) = i .

1. Écrire l’ensemble E des permutations de �1,n� sans point fixe au moyen des Ei .

2. Calculer Dn en utilisant la formule du crible.
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Partie II – Deuxième calcul : par une série génératrice

Pour tout x ∈ ]−1,1[, on pose f (x) := e−x

1−x
·

1. Justifier que f est de classe C∞ et, au moyen de la formule de Leibniz, établir que

∀n ∈N,
n∑

k=0

(
n

k

)
f (k)(0) = n!

2. Montrer que, pour tout n ∈N, n! =
n∑

k=0

(
n

k

)
Dk .

3. En déduire que, pour tout n ∈N, Dn = f (n)(0).

4. Démontrer que ∀n ∈N, Dn = n!
n∑

k=0

(−1)k

k !
.

Partie III – Troisième méthode : par une relation de récurrence

1. Calculer D1, D2 et D3.

2. Établir que, pour tout n ⩾ 2, Dn = (n −1)(Dn−1 +Dn−2). Pour une permutation σ de �1,n� sans point
fixe, on pourra considérer k =σ(n) et discuter suivant la valeur de σ(k).

3. Montrer que, pour tout n ∈N∗, Dn = nDn−1 + (−1)n .

4. En déduire que, pour tout n ∈N∗, Dn = n!
n∑

k=0

(−1)k

k !
.

5. Par une formule de Taylor, montrer que
n∑

k=0

(−1)k

k !
−−−−−→
n→+∞ e−1. En déduire un équivalent de Dn .
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VI. Indications

1 �

Faire une figure.

2 �

On trouve p2n−p , (p +1)2n−p et 2n −2n−p .

3 �

Commencer par esquisser des patates.

4 �

On trouve 3n couples au 1. et (p +1)n au 2. On pourra par exemple utiliser les fonctions indicatrices.

5 �

On trouve 3n , 3n , 2n −2 et 4n .

6 �

Construire une solution (X,Y) « point par point ».

7 �

Pour k ∈ �1,n�, combien dénombre-t-on de X ⊂ �1,n� tels que k ∈ X ?

8 �

AU 3.b., on pourra se ramener au cas où |A|⩽|B| et raisonner par l’absurde.

9 �

C’est du cours aux a), b) et c) : nm , n!, n!. On trouve n!(n −1)/2 au c).

10 �

Pour la relation du 3., construire une application surjective f : �1,n +1� → �1,m� en distinguant deux cas :
f (1) a pour unique antécédent 1 ou admet au moins deux antécédents.

11 �

Au 3., on pourra construire p en choisissant d’abord son image p〈E〉 puis en définissant p(x) pour tout
x ∈ E.

12 �

LLG . HX 6 11
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Remarquer que S =
p⋃

i=1
Si .

13 �

Ce sont des calculs très proches du cours. Utiliser le lemme des bergers.

14 �

Au 3., il est judicieux de passer au complémentaire.

15 �

On a bien-sûr ∣∣Pe
∣∣ = ∑

0⩽2k⩽n

(
n

2k

)
et

∣∣Po
∣∣ = ∑

0⩽2k+1⩽n

(
n

2k +1

)
et voir le cours pour la suite.

16 �

On peut décrire géométriquement les différents ensembles afin de se forger une intuition.

17 �

Dans le cas des bancs, les places sont distinguables, ce qui n’est pas le cas dans le cas de la table.

18 �

On trouve λ :=p
e − 1p

e
avec un peu d’asymptotique.

19 �

Au 3., on pourra construire une partie de diamètre k en choisissant d’abord son maximum M (son minimum
sera alors nécessairement M−k) puis en complétant la paire

{
M−k,M

}
.

20 �

Pour x fixé dans E,
∑

A∈P (E)1A(x) est le nombre de parties de E contenant l’élément x (cf. l’exercice 2).

21 �

Raisonner par récurrence à la dernière question.

22 �

C’est un exemple très proche du cours : effectuer une disjonction de cas selon la valeur de xn .

23 �

On trouve ρn,2 = 2n−1 −1.
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24 �

Au 2., construire une involutionσ de �1,n+2� en considérant deux cas :σ(n+2) = n+2 etσ(n+2) ∈ �1,n+1�.

25 �

Il s’agit de compter les partitions de �1,n+1�. On pourra commencer par construire la partie A contenant 1
puis partitionner �1,n +1�\ A.

26 �

Au I.3., on pourra fixer a dans E puis construire une partition de E en commençant par la partie qui contient
a.

27 �

On a Sn \ E =
n⋃

i=1
Ei .

LLG . HX 6 13
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