Fonctions dérivables

En mathématiques, nous sommes d’avantage des serviteurs que des maitres.
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I. Généralités, exemples et contre-exemples

Q® L'entonnoir a sinus

Soit f et g les fonctions définies sur R* par f: x — xsin(1/x), g:x+— x?sin(1/x).
1. Prolonger par continuité en 0 les fonctions f et g.

2. Etudier la dérivabilité sur R de ces prolongements que nous noterons abusivement f et g.

o® Une bijection et sa réciproque

Soit f: R — R I'application définie par f(x) = e* + x.
1. Montrer que f est bijective.

2. Montrer que f~! est dérivable et déterminer la valeur de (f~!)' (1).

3. Montrer que f~! est deux fois dérivable et donner la valeur de (f _1)” (D).

Q@ Sandwich au voisinage de 0 f

Soit f: [0,1] — R une fonction telle que Vx € [0,1], Vx > f(x) > V/x.
1. Montrer que f est prolongeable par continuité en 0.

2. Ce prolongement est-il dérivable en 0 ?

n Q@ Ftude d’un raccord f

Soit f:[0,1] — R une fonction dérivable. On définit une fonction ¢ : [0,1] — R par:

fx)  sixeo,3]

P = {f(Zx— 1) sinon

Donner une condition suffisante et nécessaire pour que ¢ soit dérivable sur [0, 1].

Q® Avec partie entiére f

Etudier la dérivabilité de Grx— (x—[x])(x—|x]-1).

B Q® Le Guldermanien f

On note Gy : x — arctan (sinh(x)).

1. Calculer G4(0). Montrer que G4 est dérivable sur R et déterminer sa dérivée. Vérifier que G/, = cosoGy.
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2. Justifier que G, réalise une bijection de R sur I'intervalle G;(IR) que I'on déterminera.

. 1
3. Etablir que G(;l est dérivable et que sa dérivée vaut —-
cos

4. On pose F := 2Gy. Vérifier que f est solution de I'équation du pendule simple F’ + sinoF = 0.

Q® Dérivée d’une itérée en un point fixe f

Soit f: R — R une fonction dérivable, a € R un point fixe de f et n € IN*. Montrer que f":= fo---o f (itérée
n-éme de f) est dérivable et exprimer sa dérivée en a en fonction de n et de f'(«).

a Q@ Dérivée symétrique ff (pour le 3.)

Soit f: R — R. Onnote g: R* — R la fonction définie par g(x) := W

1. On suppose que f est dérivable en 0. Montrer que g admet une limite en 0.
2. Démontrer que la réciproque est fausse.

3. On suppose que f est croissante au voisinage de 0 et g(x) 0 0. Etablir que f est dérivable en 0.
X—

a 0@ Dérivabilité de la valeur absolue d’une fonction ff

1. Soit f, une application dérivable de R dans RR.
a. On suppose que f(xp) # 0. Démontrer que la fonction | f| est dérivable en x.
b. On suppose que f(xg) = 0. Démontrer que | f| est dérivable en x si et seulement si f’(xp) = 0.

2. Construire une fonction continue sur [0, 1], telle qu’il existe une infinité de réels dans [0, 1] en lesquels
elle ne soit pas dérivable.

10 X Local et global ff
Soit f: Ry — R dérivable, bornée et telle que f(0) = 0. Montrer que 3C >0, Vxe R, f(x)| < Cx.
11 [eX Une fonction implicite ff

Soit r€ R.
1. Montrer que I'équation xe* = f possede une unique solution x; dans R,.
2. Justifier que la fonction f: ¢ — x; est continue sur R .

3. Lafonction f est-elle dérivable sur R ? Déterminer la classe de f sur R..
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12 [eXO Limite en +oo et dérivée ff

Soit f: Ry — R dérivable.
1. On suppose que f'(x)

+00. Est-il vrai que f(x) +00 ?

X—+00 X—+00

2. Trouver une fonction f telle que f(x)

— 0 et telle que f’'(x) n"admette pas de limite en +oo.
—T00

13 [eXO Dérivée et monotonie ff

1. Soit f, une fonction de classe ¢! sur R, telle que f'(0) > 0. Démontrer que f est strictement croissante
au voisinage de 0.

2. Trouver une fonction dérivable sur R, telle que f'(0) = 1, qui n’est pas croissante au voisinage de 0.

II. Théoréme de Rolle, théoréme et inégalité des accroissements finis

14 RXO) Cascad’Rolle

Soit n € IN*, a et b dans R tels que a < b et f une fonction de classe 6" 1 sur ]a, b[, n fois dérivable sur
la, bl.Soit ay =a< a; <--- < a, = b des réels tels que

flap) = flay) =---= f(ap)

Montrer qu'il existe ¢ €]a, b| tel que £ (c) = 0.

15 XS On the Rolle again f
Soit n € IN*, I un vrai intervalle de R, a et b dans I avec a < b et f : 1 — R n fois dérivable sur I tels que
fla)=f'(@)=---= f"V(a) = f(b) = 0. Montrer que Ic €]a, b[ tel que f"(c) =0.

16 KX Profite d’Rolle f

Soit a< bet f:[a,b] — R dérivable s’annulant en a et en b, vérifiant f'(a) >0 et f'(b) > 0.
Démontrer I'existence de trois réels ¢; < ¢; < c3 tels que f'(c1) = f(c2) = f'(c3) =0.

Il © ® Etude d’une suite récurrente

2

Soita € ]0, 3, (n) e une suite définie par up € [0,1] et Ve N, upiy =1-au’,

1. Démontrer que I’équation x =1 - ax? admet une seule solution dans [0, 1]. On la note £.
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2. Démontrer 'existence de A € [0,1[tel que Vrn e N, [uy+1 — €] < Alu, —£].

INDICATION : appliquer I'inégalité des accroissements finis.

3. En conclure que u,, —— ¢.
n—+oo

18 KX Une minoration affine ff

Soit f une fonction € sur [0,1] telle que f(0) =0 et Vx € [0,1], f'(x) > 0. Montrer qu’il existe un réel pu > 0
tel que Vx € [0,1], f(x) > ux.

19 RO Généralisation du TAF et régle de I'Hospital ff

1. Soient a et b des nombres réels tels que a < b, f et g des fonctions continues de [a, b] dans R et déri-
vables sur ]a, b[. Montrer qu'il existe ¢ €]a, b tel que g'(¢) (f(b) - f(@) = f'(c) (gb) - g(@)).

2. Soient I un vrai intervalle de R, xp €1, f,g:1— R continues sur I, dérivables sur I\ {xy} vérifiant de plus

/ —
C) —— ¢ € R. Montrer que Jx) = J (xo)

Vxel, g'(x) #0et
xel, gx)#0e o/(xX) g(x) — g(xg) x—xo

20 XS Il faut dessiner ! ff

Soit une fonction f:[0,1] — R de classe ¢! telle que f(0) = f(1) = f'(0) = 0. Prouver 'existence d'un point
du graphe de f distinct de I'origine en lequel la tangente au graphe passe par |'origine.

21 KO Deux classiques en un ff

On considere une fonction f € €1(10,1],R), telle que f(0)=0et f(1)f'(1) <O0.
1. Démontrer qu'il existe un réel a €10, 1] tel que f'(a) = 0.

2. Méme question en supposant simplement f dérivable sur [0, 1].

22 feXS] Un point attracteur ff

Soit f: R — R de classe ¢ telle que f(0) =0et |f'(0)| <1.
fx)| < k.

2. En déduire que l'intervalle [—a, a] est stable par f.

1. Démontrer que Ja >0, dk € [0,1[, Vx € [, a],

3. Prouver que, Y € [, a], la suite définie par u,+; = f(u,) pour tout n € IN converge vers 0.

el O @ Théoreme de Darboux fff

Soit f une fonction dérivable sur un vrai intervalle I. Soient a et b dans I tels que f'(a) < f'(b).
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1. Soienty € | f'(a), f'(b)| et g: x — f(x)—yx définie sur I. Montrer que g'(a)g'(b) < 0 puis que g n’est pas
injective.

2. En déduire l'existence de c € 1 tel que y = f'(c).

3. Etablir que f'(I) est un intervalle.

Nous venons d’établir le théoreme de Darboux : toute fonction dérivée possede la propriété des valeurs
intermédiaires.

24 ReEO] Au-dela de Taylor-Lagrange fff

Soit f € €"(I,R) ot 1 est un vrai intervalle, n € N* et x,..., x; des points distincts de I. On note L le poly-
nome de degré au plus n— 1 qui coincide avec f an x;, pour tout i entre 1 et n. Etablir que :

(n) n
) l_[(x— X;)

i=1

Vxel, dcel, f(x)-L(x) =

III. Equations fonctionnelles

25 XS Une caractérisation des paraboles f
Soit f: R — R dérivable telle que V(a, b) € R?, f(a)— f(b) = (a—Db)f’ (%b) :

1. Montrer que f est trois fois dérivable sur R.

2. En déduire que f est polynomiale de degré au plus deux.

26 KO Fonctions dérivables duplicatives ff

Soit f: R — R dérivable en 0 telle que Vx € R, f(2x) =2f(x). Démontrer que f est linéaire.

27 (XSS X-PC 2009 fff

Déterminer les fonctions f : R — R de classe ¢! telles que Vx € R, (fo f)(x) = g +1.
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IV. Dérivées successives

28 KO Le contre-exemple de Cauchy ff

1
t

Soit f la fonction définie sur R par Vi e R}, f(f)=e *.etnullesur R_.

1. Montrer que Vn € IN, 3P, polynome a coefficients réels tel que Vi e R* () = %
2. Montrer que f est de classe € sur R.
29 XS Autour de Leibniz ff

1
Soit f: R* — R une fonction de classe €. Pour tout n € IN* et x € R*, on pose f,(x) := x" "' f (—)
X

1. Justifier 'existence de g, := ) hour tout n e IN*.

2. Aumoyen de la formule de Leibniz, exprimer g, en fonction de gJ, et g, pour tout n € IN*.

-1" 1
3. En déduire que, pour tout ne N* et xe R}, gu(x) = Lf(”) (—)
X

xn+1

30 K Dérivées successives de I'arcsinus ff

SoitI=]—1,1[ et f lafonction définiepar f : I — R

X —
1— x?
1. Montrer que f est de classe ¢ sur I et que

Py (x)

VnelN, Vxel fPx)=—""—
(1_x2)n+§

ou P, est un polyndéme réel

2. Prouver que Vxel, (1 - xz)f’(x) -xf(x)=0.
3. En déduire que pour tout n € IN*, Vx €1, Py (x) = 2n+ 1)xP,(x) + n? (1 - x?) Pp_1 (x).

4. Prouver que pour tout n € IN* et tout x € I, P/, (x) = n?P,_1(x).

V. Fonctions usuelles

31 XS Une simplification f

On se propose de simplifier par trois méthodes différentes I'expression f(x) := arcsin(

X
)
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1. Etablir que f est définie et dérivable sur R puis calculer f’. En déduire que f = arctan.

Laurent Kaczmarek

2. Retrouver que f = arctan par un changement de variable, i.e. en écrivant x = ¢(#) ou ¢ est une fonction

bien choisie.

3. Démontrer que f = arctan en simplifiant tan f(x) pour tout x € R.

32 pXo La formule cachée f

m o1
On souhaite établir que Vx € [0,1], arcsin (v/x) = " + 5 arcsin(2x — 1).

1. Premiére méthode : en utilisant la dérivation.

2. Seconde méthode : en utilisant les formules de trigonométrie. On pourra poser x = sin? .

33 XS Belle et inutile formule f

Simplifier la somme S = arctan(2) + arctan(3) + arctan (2 + \/§)

34 QXO La formule de Machin f

1 1 T
Prouver la relation 4 arctan (—) —arctan (—) =—.
5 239 4

35 RXO) Calcul de cos(nt/5) ff

On pose y = arcsin ( ) - Calculer cos4y et en déduire la valeur de y.

36 LK Des équations ff
Résoudre les équations suivantes :
n ) ) n
1. arctan x + arctan(2x) = Z; 2. arcsin(2x) +arcsin(x) = 5;

3. arcsin(2x) = arcsinx + arcsin(\/ix).
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VI. Problemes

37 XS Résolution d’'une équation fonctionnelle f- ff
e s . . - ) o . 2f(x)
On s’'intéresse dans ce sujet aux fonctions f: R — R vérifiant'équation E : Vx e R, f(2x) = m

Partie I — Propriétés générales des solutions de E

Dans cette section, on se donne une solution f de E.
1. Etablir que f(0) € {-1,0,1}.
2y
y2+1
b. En déduire que f(R) c[-1,1].

3. On suppose dans cette question que f est continue en 0.

2. a. Vérifierque VyeR,

~X

a. On suppose que dxp € R, f(xp) = 1. Démontrer que Vrne N, f (;—2) = 1. En déduire f(0).
b. On suppose que 3xy € R, f(x9) = —1. Déterminer la valeur de f(0).

c. On suppose que dxp € R, —1 < f(xp) < 1. Démontrer que Vn € N, ‘f (;—2)
valeur de f(0).

d. On suppose que 1 € f(R). Déterminer f. Méme question sous ’hypothése —1 € f(R).

< |f (x0)|- En déduire la

Partie II — Solutions de E dérivables en 0

On rappelle que tanh réalise une bijection de R sur ] —1,1[.

1. Dans cette question, on se donne une solution f de E dérivable en 0 telle que f(0) = 0. On pose la
fonction 8 :=tanh 1 of.

a. Justifier que 0 est bien définie et dérivable en 0.
b. Vérifier que tanh est une solution de I’équation E.
c. En déduire que Vx e R, 08 (2x) =20(x).

AR

d. Etablir que, pour tout entier naturel 7 et tout réel x, 0 (2_” on

e. Démontrer I'existence de A € R tel que Vx € R, 6(x) = Ax.

2. En déduire les solutions de E dérivables en 0.

38 QXS La méthode de Newton ff

Soit a et b deux réels tels que a < b et f une fonction de classe €° sur [a, b] vérifiant les hypothéses sui-
vantes :
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fl@<0, f(b)>0, f'(a)>0 et Vxelahbl, f'(x)>0

On note ¥ la courbe représentative de f dans un repéere orthonormé direct du plan.

Le but de ce probleme est de donner une méthode de résolution approchée de I'équation f(x) = 0. On
notera a I'unique solution de cette équation. Les approximations seront données par une suite qui converge
Vers a.

La premiére partie du probleme étudie la convergence de cette suite. Dans la deuxiéme, la vitesse de
convergence de cette suite sera évaluée.

Partie I - Description et convergence de la méthode de Newton

1. Montrer I'existence et I'unicité de a.

2. Soit u € [a, b]. Montrer que la tangente 4 € au point de coordonnées (u, f (1)) et I'axe des abscisses sont
des droites sécantes. Calculer leur intersection.

AC))
flx)

a. Justifier que g est de classe € puis calculer g’(x) pour x € [a, b].

3. Soit g la fonction définie sur [a, b] par g(x) = x

b. Etudier les variations de g.
c. En déduire que l'intervalle o, b[ est stable par g.

4. On définit la suite (x,) par xp €]la,b[et Vne N, x,41 = glxn).
a. Montrer que la suite (x,) est bien définie.

b. Quelle est I'interprétation géométrique de la suite (x,) 2 On illustrera son propos par une figure
soignée.

c. Etablir que x,, —— a.
n—+oo

Partie II - Vitesse de convergence de la méthode de Newton

1
On reprend les notations de la partie I et on pose K := > n?a)é] | g’ |
tela,

1. a. Justifier I'existence de K.
b. Calculer g(a) et g’(a) en fonction de f'(a) et f" ().

c. Soit x € [a, b]. Démontrer I'existence d'un réel ¢ compris entre « et x tel que

a2

On pourra appliquer le théoreme de Rolle a une fonction auxiliaire et sa dérivée.

gx)—a=

2. Pour tout entier naturel 7, on pose €, := | x, —«f.

a. Etablirque Vne NN, g, <Ke?.
b. En déduire I'existence de nyp € IN, de M € R, etde A € [0, 1] tel que

Vn>ng, £, <MAZ
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39 RXO) Estimation du nombre d’involutions de [1,n]

Lobjectif de ce probleme est la détermination d'un équivalent simple de la suite définie par
To=1,T; =1 et Vn, Ty =T, +n+1DT,
On rappelle quelques définitions et propriétés qui pourront étre librement utilisées dans la partie I de ce
probléme :
= On appelle primitive de f : R} — R toute fonction F: R} — R dérivable telle que F' = f.

N

= Une fonction continue f sur R} a valeurs dans R admet des primitives. En notant F I'une d’entre-elles,
ona

b
Va>0,Vb>0,f f)dt = F(b) —F(a)

= Pour u,v: R} — R de classe %1, on a

b
Va>0,‘v’b>0,f

a

b
W' (Dv@)dr = u(b)v(b)-u(a) v(a)—f u(t)v' (r)dt (formule d’intégration par parties)
a
= Pour f: R} — R continue, on a

b c c
Ya>0,Vb>0,Vc>0, f f(t)dt+f f(nde :f f(r)dt (relation de Chasles)
a b a

Partie I - La formule de Stirling

1. Soit (a, b) € R? tel que a< betF:[a,b] — R de classe €3, Soit A e R et

0:[a,b] — R

F'(a) + F' (1) (t—a)d
t — F(t)—F(a)- #(t— a)+ A\ o

a. Justifier que d est de classe & 2 sur [a, b] puis expliciter les fonctions &' et 8.
b. Déterminer 8(a) et &' (a).

c. Dans cette question, on choisit A € R tel que §(b) = 0. Démontrer I'existence de ¢ dans ]a, b[ tel que

F'(a) +F'(b)

3
F(b) = F(@) + ————(b-a) EC I GOl

12

2. Etablir que :
In(k) +In(k+1) N 1

k+1
‘v’ke]N*,EICke]k,k+1[,f In(r)dt =
k

2 120%
INDICATION : Considérer une primitive F de In.
3. En déduire que, pour tout entier naturel n tel que n > 2 :
n 1 n-1 1
f In()dt = —=-Inn+Inn!'+C,, ou C,:= Z =
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. _ n\n .
4. Etablir que n! = e “"y/n (—) pour tout entier naturel n tel que n > 2.
e

INDICATION : Calculer l'intégrale de la question I.3.au moyen d’une intégration par parties.
5. Montrer que (C,),>2 converge.

1 1
INDICATION : On remarquera que Vk > 2, C_z < 1"
2 _

&=

n\n
6. Démontrer que n! ~ vV2nn (—) en admettant la formule de Wallis :
e

24nn!4
2n+1)(2n)!2 n—+oo

L
2

Partie II — Etude d’une suite de polynomes

On considere la fonction numérique u définie sur R par :

2
2

VxeR, ulx) =e

Pour tout entier naturel 7, on désigne par u""” la dérivée n-éme de u. On note H,, la fonction numérique
définie sur R par la relation u""?(x) = H,,(x)u(x). On note v, la fonction numérique définie sur R par la
relation :

x2
Vin,x) eNxR, v,(x) = H,(x)e+
1. Exprimer u/(x) en fonction de u(x) et x € R.

2. En déduire la relation suivante, pour tout nombre entier n > 2 :
VxeR, u @) =xu Y@+ n-1)u"?(x)
3. Calculer Hy et Hy, puis déduire des relations précédentes I'expression de H, (x) en fonction de H,,—; (x),

H,_»(x)etxelR.

4. Prouver que H,, est une fonction polynomiale dont on précisera, en fonction de n, le degré, la parité et
le signe sur I'intervalle R ;.

5. Comparer T, et Hj(1).
6. Etablir que pour tout nombre entier naturel non nul n et x € R, H) (x) = nH,_1 (x).

7. Pour tout nombre entier naturel 7, exprimer H,(0) et H),(0) en fonction de n. On distinguera deux cas
suivant la parité de n.

8. Etablir que, pour tout nombre entier naturel 7 :
VxeR, H)(x)+xH) (x) — nHu(x) =0

9. Ftudier le signe de v, et de v}, sur R,. Calculer v,(0) et v/,(0).

10. Exprimer v/, (x) en fonction de v,(x) et x € R.
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11. En déduire la relation suivante, pour tout nombre entier naturel n et pour tout nombre réel x apparte-
nanta[0,1] :

1 3
— < " < =
(n+2)vn(x) < v,(x) < n+4 Vn(x)

Partie III — Une inégalité différentielle

On établit dans cette question un résultat préliminaire permettant d’encadrer une fonction f: [0,1] — R}
de classe € et satisfaisant aux relations :

fO)=a, fl0)=0 et Vxe[0,1], o*f(x) < f"(x) <P*f(x)

ol a, o et f sont des nombres réels strictement positifs donnés.

1. Déterminer des nombres réels A et p tels que la fonction numérique ¢ définie sur [0, 1] par
d(x) = AePX + pe P~

vérifie ¢p(0) = a et ¢'(0) = 0. Indiquer alors le signe de ¢ sur [0,1] et exprimer ¢ (x) en fonction de ¢ (x).

2. Soit w la fonction numérique définie sur [0, 1] par la relation

w:=f¢'—¢f’
Calculer w(0). Etudier le signe de w’, puis celui de w.

3. En déduire, pour tout nombre réel x appartenant a [0, 1], 'inégalité f(x) < ¢(x).

4. Etablir, pour tout nombre réel x appartenant a [0, 1], I'inégalité suivante :
a
o< 5 (1
5. Etablir de méme que, pour tout nombre réel x appartenant a [0,1] :

ge‘” < fx)

INDICATION : Adapter la stratégie des questions de II1.1. 4 IIL.4. afin d’exploiter I'inégalité o f < f”.

On établit par des méthodes analogues que, si g est une fonction numérique définie sur [0,1] a valeurs
strictement positives sur ]0, 1] de classe &2 et satisfaisant aux relations

g0)=0,g'0)=a et Vxe[0,1], a’g(x) < g"(x) < p*g(x)

ol a, o et f sont des nombres réels strictement positifs donnés, alors

Vxelo,1], % (€™ —1) < g(x) < = b

26

On ne demande pas de démonstration de ce résultat, et on pourra l'utiliser librement dans la suite du sujet.
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Partie IV — Application a I'estimation de T,

Pour tout n € IN, on pose :

1 3
ay = n+§ et Pn:= n+L—1
1. Déterminer des équivalents de e® et ef» de la forme ™ o1 p est une constante.

2. Etablir que, pour tout nombre entier naturel 7 :

A2n 1 ef)Zn +1
Hy,(0) 5 < etHy,(1) < Hpp(0)
3. En déduire que
-1 /o 2n\"
H,,(1) ~ —e %e —
e

—

e 1
4. Démontrer que Hpp,41 (1) ~ Tﬁe‘/ﬁHZn(O)-

5. Déterminer un équivalent de Hy,,+1(1).
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VII. Indications

(1 )

Les deux fonctions sont prolongeables par continuité en 0 par f(0) = g(0) = 0. La fonction f n’est pas déri-
vable en 0 car f(x)/x n’a pas de limite en 0. La fonction g est dérivable en 0 avec g'(0) = 0.

8-

On trouve (f~ )" M =1et (f )" () =-

8 -

Revenir au taux d’accroissement.

g -

1l faut étudier le raccord en 1-

2
5

Pas de souci en un point de R\ Z. Etudier la dérivabilité a gauche et a droite de n € Z.
0-

On trouve que, pour tout réel x, (G;l)'(x) =

7 )

Ontrouve YnelN, () (a) = (f'(00)".

B -

Aux 1. et 3., il est profitable d’exprimer g au moyen du taux d’accroissement de f en 0.

B -

Au 1.a.,, on pourra remarquer que | f| est une composée. Au 1.b., on pourra s'intéresser au taux d’accroisse-
ment de | f| en x( a gauche et a droite de xy. Au 2., s'inspirer du sinus du topologue.

(10

L'expression

o -

La fonction f estla réciproque d’'une bijection.

1
8

COS X

fx)

—— est petite pour des raisons différentes pour x «petit» et x « grand ».
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o -

Réponse positive au 1. Construire un cex au 2. de la forme x — A(x) sin0(x).

(13 )

Au 2., rechercher une fonction de la forme 0 — 0 , x # 0 — x*sin xP.

o -

Raisonner par récurrence.

o -

Procéder par récurrence.

o -

Faire une figure. Prouver |'existence de a > c; et de p < ¢, tels que f(a) >0 et f(B) < 0. Conclure.

® -

Le réel A := 2a convient (cf. 'TAF).

o -

La fonction f’ admet un minimum sur [0, 1].

o -

Appliquer le théoreme de Rolle a une fonction de la forme x — C;(g(x) — g(a)) + C2(f (x) — f(a)) ou C; et Cy
sont des constantes.

o I

Il faut dessiner ! Il y a du % dansl'air...

o -

TAF et TVI au 1. TVI et Rolle au 2. (par exemple).

® -

Appliquer la définition de la continuité de f' en 0 au 1.

8-

Sur un intervalle, une fonction continue injective est strictement monotone.
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i I

Dans le cas ol x & {x1,..., X}, poser

Viel, g := f()-Lx)-K[]t-x)
i=1

ol K sera judicieusement choisi tel que g(x) = 0. La fonction g s’annule en n + 1 points, appliquer le théo-
reme de Rolle plusieurs fois pour conclure.

e -

Au 1., choisir par exemple a:= x+ 1 et b:= x— 1 o1 x € R. Montrer que & =0.

(26 I

Faire apparaitre le taux d’accroissement en 0 en itérant dans I’équation fonctionnelle.

e -

Vérifier que f (% +1)= % +1 pour tout x € R puis en déduire que f’ est constante.

oo I

Raisonner par récurrence au a). Idem au b) en appliquant le théoréme de la limite de la dérivée. On a
£ (0) = 0, pour tout n € IN.

e -

Remarquez que, pour tout réel x non nul, x f,,(x) = f,+1(x) et n’'oubliez pas Leibniz.

e -

Au 3., on pourra appliquer la formule de Leibniz.

o -

Poser x =tant.

(32 )

Attention a I’ensemble de dérivabilité.

8-

On trouve 57/6.

o -

Utiliser, par exemple, les nombres complexes.
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8-

Il faut faire apparaitre sin(y) puisque y est un arcsinus. On trouve cos(4y) = —sin(y) = —

oo I

Attention aux équivalences logiques : il est par exemple faux d’écrire

1+V5
4

b B
arctan x + arctan(2x) = Z <= tan(arctanx + arctan(2x)) = tan Z

On pourra raisonner par Analyse-Synthese, utiliser des études de fonctions (pour connaitre le nombre de
solutions d’'une équation ou leurs signes par exemple), etc.

@ -

Aul.3.c., on trouve f(0) =0.

oo I

Cf. le chapitre AN 1 et en particulier le paragraphe dédié aux développements décimaux pour le principe de
la méthode de Newton.

) -

Au II.2., on pourra appliquer la formule de Leibniz.
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