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I. Généralités, exemples et contre-exemples

1 � 4 L’entonnoir à sinus

Soit f et g les fonctions définies surR∗ par f : x 7→ x sin(1/x), g : x 7→ x2 sin(1/x).

1. Prolonger par continuité en 0 les fonctions f et g .

2. Etudier la dérivabilité surR de ces prolongements que nous noterons abusivement f et g .

2 � 4 Une bijection et sa réciproque

Soit f :R→R l’application définie par f (x) = ex +x.

1. Montrer que f est bijective.

2. Montrer que f −1 est dérivable et déterminer la valeur de
(

f −1
)′

(1).

3. Montrer que f −1 est deux fois dérivable et donner la valeur de
(

f −1
)′′

(1).

3 � 4 Sandwich au voisinage de 0 f

Soit f : [0,1] →R une fonction telle que ∀x ∈ [0,1], 3
p

x ⩾ f (x) ⩾
p

x.

1. Montrer que f est prolongeable par continuité en 0.

2. Ce prolongement est-il dérivable en 0 ?

4 � 4 Étude d’un raccord f

Soit f : [0,1] →R une fonction dérivable. On définit une fonction φ : [0,1] →R par :

φ(x) =
{

f (2x) si x ∈ [
0, 1

2

]
f (2x −1) sinon

Donner une condition suffisante et nécessaire pour que φ soit dérivable sur [0,1].

5 � 4 Avec partie entière f

Étudier la dérivabilité de φ : x 7→ (x −⌊x⌋) (x −⌊x⌋−1).

6 � 4 Le Guldermanien f

On note Gd : x 7→ arctan
(

sinh(x)
)
.

1. Calculer Gd (0). Montrer que Gd est dérivable surR et déterminer sa dérivée. Vérifier que G′
d = cos◦Gd .
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2. Justifier que Gd réalise une bijection deR sur l’intervalle Gd 〈R〉 que l’on déterminera.

3. Établir que G−1
d est dérivable et que sa dérivée vaut

1

cos
·

4. On pose F := 2Gg . Vérifier que f est solution de l’équation du pendule simple F′′+ sin◦F = 0.

7 � 4 Dérivée d’une itérée en un point fixe f

Soit f :R→R une fonction dérivable, α ∈R un point fixe de f et n ∈N∗. Montrer que f n := f ◦· · ·◦ f (itérée
n-ème de f ) est dérivable et exprimer sa dérivée en α en fonction de n et de f ′(α).

8 � 4 Dérivée symétrique ff (pour le 3.)

Soit f :R→R. On note g :R∗ →R la fonction définie par g (x) := f (x)− f (−x)

2x
·

1. On suppose que f est dérivable en 0. Montrer que g admet une limite en 0.

2. Démontrer que la réciproque est fausse.

3. On suppose que f est croissante au voisinage de 0 et g (x) −−−→
x→0

0. Établir que f est dérivable en 0.

9 � 4 Dérivabilité de la valeur absolue d’une fonction ff

1. Soit f , une application dérivable deR dansR.

a. On suppose que f (x0) ̸= 0. Démontrer que la fonction | f | est dérivable en x0.

b. On suppose que f (x0) = 0. Démontrer que | f | est dérivable en x0 si et seulement si f ′(x0) = 0.

2. Construire une fonction continue sur [0,1], telle qu’il existe une infinité de réels dans [0,1] en lesquels
elle ne soit pas dérivable.

10 � 4 Local et global ff

Soit f :R+ →R dérivable, bornée et telle que f (0) = 0. Montrer que ∃C > 0 , ∀x ∈R+ ,
∣∣ f (x)

∣∣⩽Cx.

11 � 4 Une fonction implicite ff

Soit t ∈R+.

1. Montrer que l’équation xex = t possède une unique solution xt dansR+.

2. Justifier que la fonction f : t 7→ xt est continue surR+.

3. La fonction f est-elle dérivable surR+ ? Déterminer la classe de f surR+.
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12 � 4 Limite en +∞ et dérivée ff

Soit f :R+ →R dérivable.

1. On suppose que f ′(x) −−−−−→
x→+∞ +∞. Est-il vrai que f (x) −−−−−→

x→+∞ +∞ ?

2. Trouver une fonction f telle que f (x) −−−−−→
x→+∞ 0 et telle que f ′(x) n’admette pas de limite en +∞.

13 � 4 Dérivée et monotonie ff

1. Soit f , une fonction de classe C 1 surR, telle que f ′(0) > 0. Démontrer que f est strictement croissante
au voisinage de 0.

2. Trouver une fonction dérivable surR, telle que f ′(0) = 1, qui n’est pas croissante au voisinage de 0.

II. Théorème de Rolle, théorème et inégalité des accroissements finis

14 � 4 Cascad’Rolle

Soit n ∈N∗, a et b dans R tels que a < b et f une fonction de classe C n−1 sur ]a,b[, n fois dérivable sur
]a,b[. Soit a0 = a < a1 < ·· · < an = b des réels tels que

f (a0) = f (a1) = ·· · = f (an)

Montrer qu’il existe c ∈ ]a,b[ tel que f (n)(c) = 0.

15 � 4 On the Rolle again f

Soit n ∈ N∗, I un vrai intervalle de R, a et b dans I avec a < b et f : I → R n fois dérivable sur I tels que
f (a) = f ′(a) = ·· · = f (n−1)(a) = f (b) = 0. Montrer que ∃c ∈ ]a,b[ tel que f (n)(c) = 0.

16 � 4 Profite d’Rolle f

Soit a < b et f : [a,b] →R dérivable s’annulant en a et en b, vérifiant f ′(a) > 0 et f ′(b) > 0.
Démontrer l’existence de trois réels c1 < c2 < c3 tels que f ′(c1) = f (c2) = f ′(c3) = 0.

17 � 4 Étude d’une suite récurrente

Soit α ∈ ]
0, 1

2

[
, (un)n∈N une suite définie par u0 ∈ [0,1] et ∀n ∈N, un+1 = 1−αu2

n

1. Démontrer que l’équation x = 1−αx2 admet une seule solution dans [0,1]. On la note ℓ.
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2. Démontrer l’existence de λ ∈ [0,1[ tel que ∀n ∈N, |un+1 −ℓ | ⩽ λ|un −ℓ|.
INDICATION : appliquer l’inégalité des accroissements finis.

3. En conclure que un −−−−−→
n→+∞ ℓ.

18 � 4 Une minoration affine ff

Soit f une fonction C 1 sur [0,1] telle que f (0) = 0 et ∀x ∈ [0,1], f ′(x) > 0. Montrer qu’il existe un réel µ> 0
tel que ∀x ∈ [0,1], f (x)⩾ µx.

19 � 4 Généralisation du TAF et règle de l’Hospital ff

1. Soient a et b des nombres réels tels que a < b, f et g des fonctions continues de [a,b] dans R et déri-
vables sur ]a,b[. Montrer qu’il existe c ∈ ]a,b[ tel que g ′(c)

(
f (b)− f (a)

)= f ′(c)
(
g (b)− g (a)

)
.

2. Soient I un vrai intervalle deR, x0 ∈ I, f , g : I →R continues sur I, dérivables sur I \ {x0} vérifiant de plus

∀x ∈ I, g ′(x) ̸= 0 et
f ′(x)

g ′(x)
−−−−→
x→x0

ℓ ∈R. Montrer que
f (x)− f (x0)

g (x)− g (x0)
−−−−→
x→x0

ℓ.

20 � 4 Il faut dessiner ! ff

Soit une fonction f : [0,1] →R de classe C 1 telle que f (0) = f (1) = f ′(0) = 0. Prouver l’existence d’un point
du graphe de f distinct de l’origine en lequel la tangente au graphe passe par l’origine.

21 � 4 Deux classiques en un ff

On considère une fonction f ∈C 1([0,1],R), telle que f (0) = 0 et f (1) f ′(1) < 0.

1. Démontrer qu’il existe un réel a ∈ ]0,1[ tel que f ′(a) = 0.

2. Même question en supposant simplement f dérivable sur [0,1].

22 � 4 Un point attracteur ff

Soit f :R→R de classe C 1 telle que f (0) = 0 et
∣∣ f ′(0)

∣∣< 1.

1. Démontrer que ∃α> 0, ∃k ∈ [0,1[, ∀x ∈ [−α,α],
∣∣ f ′(x)

∣∣⩽ k.

2. En déduire que l’intervalle [−α,α] est stable par f .

3. Prouver que, ∀u0 ∈ [−α,α], la suite définie par un+1 = f (un) pour tout n ∈N converge vers 0.

23 � 4 Théorème de Darboux fff

Soit f une fonction dérivable sur un vrai intervalle I. Soient a et b dans I tels que f ′(a) < f ′(b).
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1. Soient γ ∈ ]
f ′(a), f ′(b)

[
et g : x 7→ f (x)−γx définie sur I. Montrer que g ′(a)g ′(b) < 0 puis que g n’est pas

injective.

2. En déduire l’existence de c ∈ I tel que γ= f ′(c).

3. Établir que f ′(I) est un intervalle.

Nous venons d’établir le théorème de Darboux : toute fonction dérivée possède la propriété des valeurs
intermédiaires.

24 � 4 Au-delà de Taylor-Lagrange fff

Soit f ∈ C n(I,R) où I est un vrai intervalle, n ∈N∗ et x1, . . . , xn des points distincts de I. On note L le poly-
nôme de degré au plus n −1 qui coïncide avec f an xi , pour tout i entre 1 et n. Établir que :

∀x ∈ I, ∃c ∈ I , f (x)−L(x) = f (n)(c)

n!

n∏
i=1

(x −xi )

III. Équations fonctionnelles

25 � 4 Une caractérisation des paraboles f

Soit f :R→R dérivable telle que ∀(a,b) ∈R2, f (a)− f (b) = (a −b) f ′
(

a +b

2

)
·

1. Montrer que f est trois fois dérivable surR.

2. En déduire que f est polynomiale de degré au plus deux.

26 � 4 Fonctions dérivables duplicatives ff

Soit f :R→R dérivable en 0 telle que ∀x ∈R, f (2x) = 2 f (x). Démontrer que f est linéaire.

27 � 4 X-PC 2009 fff

Déterminer les fonctions f :R→R de classe C 1 telles que ∀x ∈R,
(

f ◦ f
)

(x) = x

2
+1.
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IV. Dérivées successives

28 � 4 Le contre-exemple de Cauchy ff

Soit f la fonction définie surR par ∀t ∈R∗+, f (t ) = e− 1
t . et nulle surR−.

1. Montrer que ∀n ∈N, ∃ Pn polynôme à coefficients réels tel que ∀t ∈R∗
+ f (n)(t ) = Pn(t )e−1/t

t 2n
·

2. Montrer que f est de classe C ∞ surR.

29 � 4 Autour de Leibniz ff

Soit f :R∗+ →R une fonction de classe C ∞. Pour tout n ∈N∗ et x ∈R∗+, on pose fn(x) := xn−1 f

(
1

x

)
.

1. Justifier l’existence de gn := f (n)
n pour tout n ∈N∗.

2. Au moyen de la formule de Leibniz, exprimer gn+1 en fonction de g ′
n et gn pour tout n ∈N∗.

3. En déduire que, pour tout n ∈N∗ et x ∈R∗+, gn(x) = (−1)n

xn+1
f (n)

(
1

x

)
.

30 � 4 Dérivées successives de l’arcsinus ff

Soit I = ]−1,1[ et f la fonction définie par f : I −→ R

x 7−→ 1p
1−x2

1. Montrer que f est de classe C∞ sur I et que

∀n ∈N , ∀x ∈ I f (n)(x) = Pn(x)

(1−x2)n+ 1
2

où Pn est un polynôme réel

2. Prouver que ∀x ∈ I, (1−x2) f ′(x)−x f (x) = 0.

3. En déduire que pour tout n ∈N∗, ∀x ∈ I , Pn+1(x) = (2n +1)xPn(x)+n2
(
1−x2

)
Pn−1(x).

4. Prouver que pour tout n ∈N∗ et tout x ∈ I, P′
n(x) = n2Pn−1(x).

V. Fonctions usuelles

31 � 4 Une simplification f

On se propose de simplifier par trois méthodes différentes l’expression f (x) := arcsin

(
xp

x2 +1

)
.
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1. Établir que f est définie et dérivable surR puis calculer f ′. En déduire que f = arctan.

2. Retrouver que f = arctan par un changement de variable, i.e. en écrivant x =φ(t ) oùφ est une fonction
bien choisie.

3. Démontrer que f = arctan en simplifiant tan f (x) pour tout x ∈R.

32 � 4 La formule cachée f

On souhaite établir que ∀x ∈ [0,1], arcsin
(p

x
)= π

4
+ 1

2
arcsin(2x −1).

1. Première méthode : en utilisant la dérivation.

2. Seconde méthode : en utilisant les formules de trigonométrie. On pourra poser x = sin2 u.

33 � 4 Belle et inutile formule f

Simplifier la somme S = arctan(2)+arctan(3)+arctan
(
2+p

3
)
.

34 � 4 La formule de Machin f

Prouver la relation 4arctan

(
1

5

)
−arctan

(
1

239

)
= π

4
·

35 � 4 Calcul de cos(π/5) ff

On pose y = arcsin

(
1+p

5

4

)
· Calculer cos4y et en déduire la valeur de y .

36 � 4 Des équations ff

Résoudre les équations suivantes :

1. arctan x +arctan(2x) = π

4
; 2. arcsin(2x)+arcsin(x) = π

2
;

3. arcsin(2x) = arcsin x +arcsin
(p

2x
)
.

LLG . HX 6 8
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VI. Problèmes

37 � 4 Résolution d’une équation fonctionnelle f – ff

On s’intéresse dans ce sujet aux fonctions f :R→R vérifiant l’équation E : ∀x ∈R, f (2x) = 2 f (x)

1+ f (x)2
·

Partie I – Propriétés générales des solutions de E

Dans cette section, on se donne une solution f de E.

1. Établir que f (0) ∈ {−1,0,1}.

2. a. Vérifier que ∀y ∈R,

∣∣∣∣ 2y

y2 +1

∣∣∣∣ ⩽ 1·

b. En déduire que f (R) ⊂ [−1,1].

3. On suppose dans cette question que f est continue en 0.

a. On suppose que ∃x0 ∈R, f (x0) = 1. Démontrer que ∀n ∈N, f
( x0

2n

)
= 1. En déduire f (0).

b. On suppose que ∃x0 ∈R, f (x0) =−1. Déterminer la valeur de f (0).

c. On suppose que ∃x0 ∈R, −1 < f (x0) < 1. Démontrer que ∀n ∈N,
∣∣∣ f

( x0

2n

)∣∣∣ ⩽ ∣∣ f (x0)
∣∣. En déduire la

valeur de f (0).

d. On suppose que 1 ∈ f (R). Déterminer f . Même question sous l’hypothèse −1 ∈ f (R).

Partie II – Solutions de E dérivables en 0

On rappelle que tanh réalise une bijection deR sur ]−1,1[.

1. Dans cette question, on se donne une solution f de E dérivable en 0 telle que f (0) = 0. On pose la
fonction θ := tanh−1 ◦ f .

a. Justifier que θ est bien définie et dérivable en 0.

b. Vérifier que tanh est une solution de l’équation E.

c. En déduire que ∀x ∈R, θ (2x) = 2θ(x).

d. Établir que, pour tout entier naturel n et tout réel x, θ
( x

2n

)
= θ(x)

2n
·

e. Démontrer l’existence de λ ∈R tel que ∀x ∈R, θ(x) = λx.

2. En déduire les solutions de E dérivables en 0.

38 � 4 La méthode de Newton ff

Soit a et b deux réels tels que a < b et f une fonction de classe C 3 sur [a,b] vérifiant les hypothèses sui-
vantes :

LLG . HX 6 9
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f (a) < 0 , f (b) > 0 , f ′(a) > 0 et ∀x ∈ [a,b] , f ′′(x) > 0

On note C la courbe représentative de f dans un repère orthonormé direct du plan.

Le but de ce problème est de donner une méthode de résolution approchée de l’équation f (x) = 0. On
noteraα l’unique solution de cette équation. Les approximations seront données par une suite qui converge
vers α.

La première partie du problème étudie la convergence de cette suite. Dans la deuxième, la vitesse de
convergence de cette suite sera évaluée.

Partie I – Description et convergence de la méthode de Newton

1. Montrer l’existence et l’unicité de α.

2. Soit u ∈ [a,b]. Montrer que la tangente à C au point de coordonnées
(
u, f (u)

)
et l’axe des abscisses sont

des droites sécantes. Calculer leur intersection.

3. Soit g la fonction définie sur [a,b] par g (x) = x − f (x)

f ′(x)
.

a. Justifier que g est de classe C 2 puis calculer g ′(x) pour x ∈ [a,b].

b. Étudier les variations de g .

c. En déduire que l’intervalle ]α,b[ est stable par g .

4. On définit la suite (xn) par x0 ∈ ]α,b[ et ∀n ∈N, xn+1 = g (xn).

a. Montrer que la suite (xn) est bien définie.

b. Quelle est l’interprétation géométrique de la suite (xn) ? On illustrera son propos par une figure
soignée.

c. Établir que xn −−−−−→
n→+∞ α.

Partie II – Vitesse de convergence de la méthode de Newton

On reprend les notations de la partie I et on pose K := 1

2
max

t∈[a,b]

∣∣g ′′(t )
∣∣.

1. a. Justifier l’existence de K.

b. Calculer g (α) et g ′(α) en fonction de f ′(α) et f ′′(α).

c. Soit x ∈ [a,b]. Démontrer l’existence d’un réel c compris entre α et x tel que

g (x)−α= (x −α)2

2
g ′′(c)

On pourra appliquer le théorème de Rolle à une fonction auxiliaire et sa dérivée.

2. Pour tout entier naturel n, on pose εn := |xn −α|.
a. Établir que ∀n ∈N, εn+1 ⩽Kε2

n .

b. En déduire l’existence de n0 ∈N, de M ∈R+ et de λ ∈ [0,1[ tel que

∀n ⩾ n0, εn ⩽Mλ2n−n0

LLG . HX 6 10
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39 � 4 Estimation du nombre d’involutions de �1,n�

L’objectif de ce problème est la détermination d’un équivalent simple de la suite définie par

T0 = 1, T1 = 1 et ∀n , Tn+2 = Tn+1 + (n +1)Tn

On rappelle quelques définitions et propriétés qui pourront être librement utilisées dans la partie I de ce
problème :

On appelle primitive de f :R∗+ →R toute fonction F :R∗+ →R dérivable telle que F′ = f .

Une fonction continue f surR∗+ à valeurs dansR admet des primitives. En notant F l’une d’entre-elles,
on a

∀a > 0, ∀b > 0,
∫ b

a
f (t )dt = F(b)−F(a)

Pour u, v :R∗+ →R de classe C 1, on a

∀a > 0, ∀b > 0,
∫ b

a
u′(t )v(t )dt = u(b)v(b)−u(a)v(a)−

∫ b

a
u(t )v ′(t )dt (formule d’intégration par parties)

Pour f :R∗+ →R continue, on a

∀a > 0, ∀b > 0, ∀c > 0,
∫ b

a
f (t )dt +

∫ c

b
f (t )dt =

∫ c

a
f (t )dt (relation de Chasles)

Partie I – La formule de Stirling

1. Soit (a,b) ∈R2 tel que a < b et F : [a,b] →R de classe C 3. Soit λ ∈R et

δ : [a,b] −→ R

t 7−→ F(t )−F(a)− F′(a)+F′(t )

2
(t −a)+λ (t −a)3

12

a. Justifier que δ est de classe C 2 sur [a,b] puis expliciter les fonctions δ′ et δ′′.

b. Déterminer δ(a) et δ′(a).

c. Dans cette question, on choisit λ ∈R tel que δ(b) = 0. Démontrer l’existence de c dans ]a,b[ tel que

F(b) = F(a)+ F′(a)+F′(b)

2
(b −a)−F(3)(c)

(b −a)3

12

2. Établir que :

∀k ∈N∗ , ∃ζk ∈ ]k,k +1[ ,
∫ k+1

k
ln(t )dt = ln(k)+ ln(k +1)

2
+ 1

12ζ2
k

INDICATION : Considérer une primitive F de ln.

3. En déduire que, pour tout entier naturel n tel que n ⩾ 2 :∫ n

1
ln(t )dt = −1

2
lnn + lnn!+Cn où Cn :=

n−1∑
k=1

1

ζ2
k

LLG . HX 6 11



2025-2026 Laurent Kaczmarek

4. Établir que n! = e1−Cn
p

n
(n

e

)n
pour tout entier naturel n tel que n ⩾ 2.

INDICATION : Calculer l’intégrale de la question I.3.au moyen d’une intégration par parties.

5. Montrer que (Cn)n⩾2 converge.

INDICATION : On remarquera que ∀k ⩾ 2,
1

ζ2
k

⩽
1

k −1
− 1

k
·

6. Démontrer que n! ∼ p
2πn

(n

e

)n
en admettant la formule de Wallis :

24nn!4

(2n +1)(2n)!2
−−−−−→
n→+∞

π

2

Partie II – Étude d’une suite de polynômes

On considère la fonction numérique u définie surR par :

∀x ∈R , u(x) := e
x2

2

Pour tout entier naturel n, on désigne par u(n) la dérivée n-ème de u. On note Hn la fonction numérique
définie sur R par la relation u(n)(x) = Hn(x)u(x). On note vn la fonction numérique définie sur R par la
relation :

∀(n, x) ∈N×R , vn(x) = Hn(x)e
x2

4

1. Exprimer u′(x) en fonction de u(x) et x ∈R.

2. En déduire la relation suivante, pour tout nombre entier n ⩾ 2 :

∀x ∈R , u(n)(x) = xu(n−1)(x)+ (n −1)u(n−2)(x)

3. Calculer H0 et H1, puis déduire des relations précédentes l’expression de Hn(x) en fonction de Hn−1(x),
Hn−2(x) et x ∈R.

4. Prouver que Hn est une fonction polynomiale dont on précisera, en fonction de n, le degré, la parité et
le signe sur l’intervalleR+.

5. Comparer Tn et Hn(1).

6. Établir que pour tout nombre entier naturel non nul n et x ∈R, H′
n(x) = nHn−1(x).

7. Pour tout nombre entier naturel n, exprimer Hn(0) et H′
n(0) en fonction de n. On distinguera deux cas

suivant la parité de n.

8. Établir que, pour tout nombre entier naturel n :

∀x ∈R , H′′
n(x)+xH′

n(x)−nHn(x) = 0

9. Étudier le signe de vn et de v ′
n surR+. Calculer vn(0) et v ′

n(0).

10. Exprimer v ′′
n(x) en fonction de vn(x) et x ∈R.

LLG . HX 6 12



2025-2026 Laurent Kaczmarek

11. En déduire la relation suivante, pour tout nombre entier naturel n et pour tout nombre réel x apparte-
nant à [0,1] : (

n + 1

2

)
vn(x) ⩽ v ′′

n(x) ⩽
(
n + 3

4

)
vn(x)

Partie III – Une inégalité différentielle

On établit dans cette question un résultat préliminaire permettant d’encadrer une fonction f : [0,1] →R∗+
de classe C 2 et satisfaisant aux relations :

f (0) = a , f ′(0) = 0 et ∀x ∈ [0,1] , α2 f (x) ⩽ f ′′(x) ⩽ β2 f (x)

où a, α et β sont des nombres réels strictement positifs donnés.

1. Déterminer des nombres réels λ et µ tels que la fonction numérique φ définie sur [0, 1] par

φ(x) = λeβx +µe−βx

vérifie φ(0) = a et φ′(0) = 0. Indiquer alors le signe de φ sur [0,1] et exprimer φ′′(x) en fonction de φ(x).

2. Soit w la fonction numérique définie sur [0,1] par la relation

w := f φ′−φ f ′

Calculer w(0). Étudier le signe de w ′, puis celui de w .

3. En déduire, pour tout nombre réel x appartenant à [0,1], l’inégalité f (x) ⩽ φ(x).

4. Établir, pour tout nombre réel x appartenant à [0,1], l’inégalité suivante :

f (x) ⩽
a

2

(
eβx +1

)
5. Établir de même que, pour tout nombre réel x appartenant à [0,1] :

a

2
eαx ⩽ f (x)

INDICATION : Adapter la stratégie des questions de III.1. à III.4. afin d’exploiter l’inégalité α2 f ⩽ f ′′.

On établit par des méthodes analogues que, si g est une fonction numérique définie sur [0,1] à valeurs
strictement positives sur ]0,1] de classe C 2 et satisfaisant aux relations

g (0) = 0, g ′(0) = a et ∀x ∈ [0,1] , α2g (x) ⩽ g ′′(x) ⩽ β2g (x)

où a, α et β sont des nombres réels strictement positifs donnés, alors

∀x ∈ [0,1] ,
a

2α

(
eαx −1

)
⩽ g (x) ⩽

a

2β
eβx

On ne demande pas de démonstration de ce résultat, et on pourra l’utiliser librement dans la suite du sujet.
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Partie IV – Application à l’estimation de Tn

Pour tout n ∈N, on pose :

αn :=
√

n + 1

2
et βn :=

√
n + 3

4

1. Déterminer des équivalents de eαn et eβn de la forme enµ où µ est une constante.

2. Établir que, pour tout nombre entier naturel n :

H2n(0)
eα2n

2
⩽ e

1
4 H2n(1) ⩽ H2n(0)

eβ2n +1

2

3. En déduire que

H2n(1) ∼ 1p
2

e− 1
4 e

p
2n

(
2n

e

)n

4. Démontrer que H2n+1(1) ∼ e− 1
4

2

p
ne

p
nH2n(0).

5. Déterminer un équivalent de H2n+1(1).
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VII. Indications

1 �

Les deux fonctions sont prolongeables par continuité en 0 par f (0) = g (0) = 0. La fonction f n’est pas déri-
vable en 0 car f (x)/x n’a pas de limite en 0. La fonction g est dérivable en 0 avec g ′(0) = 0.

2 �

On trouve
(

f −1
)′′

(1) = 1
2 et

(
f −1

)′′
(1) = −1

8 ·

3 �

Revenir au taux d’accroissement.

4 �

Il faut étudier le raccord en 1
2 ·

5 �

Pas de souci en un point deR\Z. Étudier la dérivabilité à gauche et à droite de n ∈Z.

6 �

On trouve que, pour tout réel x,
(
G−1

d

)′(x) = 1

cos x
·

7 �

On trouve ∀n ∈N,
(

f n
)′

(α ) = (
f ′(α)

)n .

8 �

Aux 1. et 3., il est profitable d’exprimer g au moyen du taux d’accroissement de f en 0.

9 �

Au 1.a., on pourra remarquer que | f | est une composée. Au 1.b., on pourra s’intéresser au taux d’accroisse-
ment de | f | en x0 à gauche et à droite de x0. Au 2., s’inspirer du sinus du topologue.

10 �

L’expression f (x)
x est petite pour des raisons différentes pour x « petit » et x « grand ».

11 �

La fonction f est la réciproque d’une bijection.
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12 �

Réponse positive au 1. Construire un cex au 2. de la forme x 7→ A(x)sinθ(x).

13 �

Au 2., rechercher une fonction de la forme 0 7→ 0 , x ̸= 0 7→ xα sin xβ.

14 �

Raisonner par récurrence.

15 �

Procéder par récurrence.

16 �

Faire une figure. Prouver l’existence de α> c1 et de β< c2 tels que f (α) > 0 et f (β) < 0. Conclure.

17 �

Le réel λ := 2α convient (cf. l’IAF).

18 �

La fonction f ′ admet un minimum sur [0,1].

19 �

Appliquer le théorème de Rolle à une fonction de la forme x 7→ C1(g (x)−g (a))+C2( f (x)− f (a)) où C1 et C2

sont des constantes.

20 �

Il faut dessiner ! Il y a du f (x)
x dans l’air . . .

21 �

TAF et TVI au 1. TVI et Rolle au 2. (par exemple).

22 �

Appliquer la définition de la continuité de f ′ en 0 au 1.

23 �

Sur un intervalle, une fonction continue injective est strictement monotone.
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24 �

Dans le cas où x ̸∈ {
x1, . . . , xn

}
, poser

∀t ∈ I , g (t ) := f (t )−L(x)−K
n∏

i=1
(t −xi )

où K sera judicieusement choisi tel que g (x) = 0. La fonction g s’annule en n +1 points, appliquer le théo-
rème de Rolle plusieurs fois pour conclure.

25 �

Au 1., choisir par exemple a := x +1 et b := x −1 où x ∈R. Montrer que f (3) = 0.

26 �

Faire apparaître le taux d’accroissement en 0 en itérant dans l’équation fonctionnelle.

27 �

Vérifier que f
( x

2 +1
)= f (x)

2 +1 pour tout x ∈R puis en déduire que f ′ est constante.

28 �

Raisonner par récurrence au a). Idem au b) en appliquant le théorème de la limite de la dérivée. On a
f (n)(0) = 0, pour tout n ∈N.

29 �

Remarquez que, pour tout réel x non nul, x fn(x) = fn+1(x) et n’oubliez pas Leibniz.

30 �

Au 3., on pourra appliquer la formule de Leibniz.

31 �

Poser x = tan t .

32 �

Attention à l’ensemble de dérivabilité.

33 �

On trouve 5π/6.

34 �

Utiliser, par exemple, les nombres complexes.
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35 �

Il faut faire apparaître sin(y) puisque y est un arcsinus. On trouve cos(4y) =−sin(y) =−1+p5
4 ·

36 �

Attention aux équivalences logiques : il est par exemple faux d’écrire

arctan x +arctan(2x) = π

4
⇐⇒ tan(arctan x +arctan(2x)) = tan

π

4

On pourra raisonner par Analyse-Synthèse, utiliser des études de fonctions (pour connaître le nombre de
solutions d’une équation ou leurs signes par exemple), etc.

37 �

Au I.3.c., on trouve f (0) = 0.

38 �

Cf. le chapitre AN 1 et en particulier le paragraphe dédié aux développements décimaux pour le principe de
la méthode de Newton.

39 �

Au II.2., on pourra appliquer la formule de Leibniz.
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