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1. Quizz

1 � 4 Vrai ou faux ? f

1. Soit (A,B,C) ∈Mn(K)3. Si AB = CB et B ̸= 0, alors A = C.

2. Soit (A,B) ∈Mn(K)2. Si A et B sont inversibles, alors A+B aussi.

3. Une matrice carrée est diagonale si et seulement si elle est triangulaire supérieure et inférieure.

4. Si A est inversible et symétrique, alors son inverse l’est aussi.

5. Le produit de deux matrices de T +
n (R) appartient à T +

n (R).

6. La diagonale d’une matrice antisymétrique est nulle.

7. Pour tout A ∈Mm,n(K), la matrice A⊤A est symétrique.

8. La somme de deux matrices symétriques est symétrique.

9. Le produit de deux matrices symétriques est symétrique.

10. Si A ∈Mn(K) et ∃p ∈N∗, Ap = 0, alors A = 0.

11. Il existe deux matrices A et B de M2(R) telles que AB = 0 et BA ̸= 0.

12. Si A ∈ GLn(K) et B commute avec A, alors B commute avec A−1.

13. Si A ∈Mn(K) et A2 est inversible, alors A est inversible.

14. Multiplier A à droite par une matrice élémentaire fait agir l’opération correspondante sur ses co-
lonnes.

15. Si X ∈M2(R) et X2 = I2, alors X =±I2.

16. Si A ∈M2(K) n’a aucun zéro sur la diagonale, alors A est inversible.

17. Si A2 +2A+ In = 0, alors A est inversible.

2 � 4 QCM sur le calcul matriciel f

1. Soit J ∈Mn(K) la matrice dont tous les coefficients sont égaux à 1 et M ∈Mn(K).

On note σ := ∑
1⩽i , j⩽n

Mi , j et σi :=
n∑

j=1
Mi , j pour tout i ∈ �1,n�. Pour tout M ∈Mn(K), on a :

a. JM =
(σ1 ... σ1

...
...

σn ... σn

)
; b. MJ =

(σ1 ... σ1
...

...
σn ... σn

)
;

c. JMJ =σJ ;
d. JM =

(σ1 ... σn
...

...
σ1 ... σn

)
.

2. Soit a, b et c, trois réels tels que a2 +b2 + c2 = 1 et M :=
(

a2 ba ca
ab b2 cb
ac bc c2

)
, N = I3 −M, et (u, v) ∈R2.

a. M2 = M;

b. MN = 0 ;

c. M et N commutent ;

d. N2 = 0 ;

e. (uM+ vN)n = un An + vnNn .
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3. Soit X =
(

a b
c d

)
∈M2(C).

a. X2 = tr(X)X+det(X)I2 ;

b. det(X) = (tr X)2 − tr(X2)

2
;

c. X2 = 0 ⇐⇒ tr(X) = tr(X2) = 0.

4. Soit p ∈N∗, A ∈Mp (R) telle que A3 = 0. Pour tout réel t , on pose E(t ) := Ip + t A+ t 2

2
A2.

a. ∀(t , s) ∈R2, E(t )E(s) = E(s − t ) ;

b. E(t )n = E(nt ) pour tout (t ,n) ∈R×N ;

c. ∃t ∈R, E(t ) ̸∈ GLp (R) ;

d. Pour tout (s, t ) ∈ R2, E(t ) et E(s) com-
mutent.

5. Soit A et B dans M3(R).

a. Si AB = 0, alors A = B = 0 ;

b. Si A ̸= 0, alors A est inversible ;

c. Si A2 = 0, alors A n’est pas inversible ;

d. Si A2 = 2A+ I3, alors A est inversible ;

e. Si A est inversible, alors A2 est inversible.

6. Soit J := (
1 1
0 1

)
et E := {

xI2 + yJ ; (x, y) ∈R2
}
.

a. E ne contient que deux éléments inver-
sibles ;

b. E est stable par le produit ;

c. L’équation X2 = X n’admet que deux solu-
tions.

2. Exercices élémentaires

3 � 4 Utilisation d’un polynôme annulateur

Soit A :=
(

1 0 2
0 −1 1
1 −2 0

)
. Calculer A3 −A puis en déduire que A est inversible puis déterminer A−1.

4 � 4 Algorithme du pivot

Résoudre dansR3 le système


x − 2y + z = 1

x + y + 2z = 2

x − 8y − z = −1

5 � 4 Un système linéaire à paramètres

Résoudre selon les valeurs des paramètres réels a, b et c le système


x + 2y − z = a

−2x − 3y + 3z = b

x + y − 2z = c

LLG . HX 6 3
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6 � 4 Utilisation des projecteurs spectraux

Soit m ∈C∗. On considère les matrices A =
(

0 m m2

m−1 0 m
m−2 m−1 0

)
, B = 1

3
(A+ I3) et C = 1

3
(−A+2I3).

1. Calculer (A+ I3)(A−2I3). En déduire que la matrice A est inversible et exprimer son inverse.

2. Calculer B2 et C2, puis en déduire Bn et Cn pour tout entier naturel n.

3. Calculer BC et CB. En déduire An pour tout entier naturel n.

7 � 4 Une inversion

Justifier l’inversibilité et calculer l’inverse de la matrice A =
(

1 0 −1
1 1 1
1 1 2

)
.

3. Exercices classiques plus techniques

8 � 4 Un système d’ordre n f

Résoudre le système linéaire ∀k ∈ �1,n�,
n∑
ℓ=1

xℓ = 1−xk .

9 � 4 Une inégalité sur la trace des matrices symétriques f

Soit (A,B) ∈Sn(R)2 et M := AB−BA.

1. Démontrer que tr
(
M⊤M

)= 2
(
tr

(
A2B2

)− tr
(
(AB)2

))
.

2. En déduire que tr
(
A2B2

)
⩾ tr

(
(AB)2

)
.

10 � 4 Les transvections et les dilations génèrent GLn(K) f

Montrer que toute matrice de permutation est un produit de matrices de transvection et de dilatation.

11 � 4 The claw matrix f

Soit n ∈N tel que n ⩾ 3 et M ∈Mn(R) définie par Mi , j =
{

1 si i = j ou i = 1 ou j = 1

0 sinon

Démontrer l’inversibilité de M et calculer son inverse en appliquant l’algorithme du pivot.

12 � 4 La norme infinie matricielle ff

On fixe p ∈N∗. Pour tout M ∈Mp (R), on pose
∥∥M

∥∥ = max
1⩽i , j⩽p

∣∣Mi , j
∣∣.

LLG . HX 6 4
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1. Démontrer que, pour tout (M,N) ∈Mp (R)2,
∥∥M+N

∥∥ ⩽
∥∥M

∥∥+∥∥N
∥∥ et

∥∥MN
∥∥ ⩽ p

∥∥M
∥∥∥∥N

∥∥.

2. Démontrer que, pour tout m dansN∗ et (M1, . . . ,Mm) dans Mp (R)m , on a∥∥∥∥∥ m∑
i=1

Mi

∥∥∥∥∥ ⩽
m∑

i=1
∥Mi∥ et

∥∥∥∥∥ m∏
i=1

Mi

∥∥∥∥∥ ⩽ pm−1
m∏

i=1
∥Mi∥

3. Soit (A,B) ∈Mp (R)2 tel que ∥A∥ ̸= ∥B∥.

a. Établir que, pour tout entier naturel n non nul, An −Bn =
n−1∑
i=0

Ai (A−B)Bn−1−i .

b. En déduire que

∥∥An −Bn
∥∥∥∥A−B

∥∥ ⩽ pn−1

∥∥A
∥∥n −∥∥B

∥∥n∥∥A
∥∥−∥∥B

∥∥ ·

LLG . HX 6 5
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4. Indications

1 �

Il sera le plus souvent suffisant de trouver des exemples ou des contre-exemples de taille deux ou trois.

2 �

L’inversibilité d’une matrice de taille deux est facile à étudier via son déterminant.

3 �

On trouve A3 −A = 4I3.

4 �

On trouve

{(
5−5z

3
,

1− z

3
, z

)
; z ∈R

}
.

5 �

Le système admet au moins une solution si et seulement si a +b + c = 0.

6 �

On trouve (A+ I3)(A−2I3) = 0.

7 �

On trouve A−1 =
(

1 −1 1−1 3 −2
0 −1 1

)
par l’algorithme du pivot

8 �

Procéder par analyse-Synthèse.

9 �

Au 1., éviter d’exprimer la trace en fonction des coefficients : exploiter les propriétés de la trace (linéa-
rité, etc.).

10 �

Réaliser la permutation de deux colonnes aux moyens des transvections et des dilitations.

11 �

Commencer par l’opération C1 ← C1−(C2+···+Cn )
2−n ·

12 �

Il faut montrer que, pour tous indices i et j , on a
∣∣(MN)i , j

∣∣ ⩽ p∥M∥∥N∥.

LLG . HX 6 6
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5. Solutions

1 �

1. Faux. Contre-exemple : E1,2 = E1,2E2,2 = (E1,2 +E1,1)E2,2.

2. Faux. Cex : In − In = 0.

3. Vrai.

4. Vrai car si A est symétrique et inversible, alors
(
A−1

)⊤ = (
A⊤)−1 = A−1.

5. Vrai (cf. le cours).

6. Vrai car si A est antisymétrique, alors ∀i ∈ �1,n�, Ai ,i =−Ai ,i .

7. Vrai. Pour A ∈Mm,n(K), on a
(

A⊤A
)⊤ = A⊤ (

A⊤ )⊤ = A⊤A.

8. Vrai. Si A et B sont symétriques de même taille, on a (A+B)⊤ = A⊤+B⊤ = A+B.

9. Faux. Contre-exemple :

(
0 1

1 0

)(
1 0

0 0

)
=

(
0 0

1 0

)
.

10. Faux. Contre-exemple :

(
0 1

0 0

)2

= 0.

11. Vrai. On a E1,1E1,2 = E1,2 et E1,2E1,1 = 0 d’après le cours.

12. Vrai. On a AB = BA d’où B = A−1BA puis BA−1 = A−1B.

13. Vrai. Supposons A2 inversible et notons B son inverse. Comme A commute avec A2, A commute
avec son inverse B. Ainsi In = A(AB) = (AB)A donc A est inversible et A−1 = AB.

14. Vrai (cf. le cours).

15. Faux. Contre-exemple : X = (−1 0
0 1

)
.

16. Faux. Contre-exemple : A = (
1 1
1 1

)
n’est pas inversible car AX est de la forme

(
u u
v v

)
pour tout X ∈

M2(K).

17. Vrai. On a In = A(−A−2In). Donc A est inversible à droite donc inversible et A−1 =−A−2In .

Enseignements à tirer de cet exercice

Moralité du 1. : une condition suffisante de simplification par une matrice carrée B est son in-
versibilité ; B ̸= 0 ne suffit pas à simplifier dans le cadre des matrices. On rappelle que Ei , j est la
matrice de Mn(K) dont tous les coefficients sont nuls sauf celui en position (i , j ) qui vaut 1.

Moralité du 17. : pour montrer l’inversibilité d’une matrice, on peut utiliser un polynôme annu-
lateur.

2 �
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1. Seuls b. et c. sont vrais pour toute matrice M. Soit (i , j ) ∈ �1,n�2. Par définition du produit matri-
ciel, on a 

(JM)i , j = ∑n
k=1 Ji ,k Mk, j =

∑n
k=1 Mk, j

(MJ)i , j = ∑n
k=1 Mi ,k Jk, j =

∑n
k=1 Mi ,k =σi

(JMJ)i , j = ∑
1⩽k,ℓ⩽n Ji ,k Mk,ℓJℓ, j =

∑
1⩽k,ℓ⩽n Mk,ℓ

ainsi JMJ =σJ.

2. Tout est vrai sauf le d. Posons A =
(a

b
c

)
de sorte que M = AAT.

On sait de plus que ATA = a2 +b2 + c2 = 1. Ainsi, par associativité du produit matriciel :

M2 = (AAT)2 = A(ATA)AT = M, MN = M−M2 = 0, NM = M2−M = 0 et N2 = I3+M2−2M = I3−M = N

Soit n ∈N. Puisque M et N commutent, on peut appliquer la formule du binôme :

Mn = (uM+ vN)n =
n∑

k=0
uk Mk vn−k Nn−k = unM+ vnN

En effet :

La formule est évidente pour n = 0.

Supposons que n ∈N∗. Pour tout k ∈ �1,n −1�, on a Mk Nn−k = (MN)Mk−1Nn−k−1 = 0.

3. Tout est vrai sauf a.

On a X2 − tr(X)X+det(X)I2 =
(

a2+bc ac+cd
ab+bd cb+d 2

)
−

(
a(a+d) b(a+d)
c(a+d) d(a+d)

)
+

(
ad−bc 0

0 ad−bc

)
= 0.

On a tr
(
X2

)= a2 +d 2 +2bc = (a +d)2 −2(ad −bc) = (tr X)2 −2det(X).

Supposons X2 = 0. Alors tr(X2) = 0 donc (tr(X))2 = 2det(X). De plus, par le a., on a tr(X)X =
det(X)I2, d’où tr(X)(2X− tr(X)I2) = 0 donc tr X = 0 ou 2X = tr(X)I2 = 0. Si 2X = tr(X)I2, alors
on a également 0 = 4X2 = (tr X)2I2. Ainsi tr X = 0.

Supposons tr(X) = tr(X2) = 0. On déduit de la relation du b. que det(X) = 0. Ainsi X2 = 0 par
le a.

Ainsi X2 = 0 ⇐⇒ tr(X) = tr(X2) = 0.

4. Seuls b et d sont vrais.

Soit t et s dansR. On a :

E(t )E(s) = (Ip + t A+ t 2A2/2)(Ip + sA+ s2A2/2) = Ip + (t + s)A+ (t s + t 2/2+ s2/2)A2

= Ip + (t + s)A+ (s + t )2

2
A2 = E(t + s)

car A3 = A4 = 0. On en déduit que ∀(n, t ) ∈N×R, E(t )n = E(nt ) par une récurrence immédiate,
et que E(t ) et E(s) commutent.

Soit t ∈R. D’après le point précédent, on a E(−t )E(t ) = E(t )E(−t ) = E(t − t ) = E(0) = Ip . On en
déduit que E(t ) est inversible avec E(t )−1 = E(−t ).

5. a. C’est faux comme le prouve le contre-exemple A = B =
(

0 0 1
0 0 0
0 0 0

)
.

b. C’est faux : même contre-exemple qu’à la question précédente.

c. Si A est inversible, alors A2 aussi (un produit de matrices inversibles est inversible) et donc
A2 ̸= 0. La propriété est donc vraie car sa contraposée est vraie.

LLG . HX 6 8
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d. C’est vrai. Supposons que A2 = 2A+ I3. On a alors A(A− 2I3) = (A− 2I3)A = I3 et A est donc
inversible.

e. C’est vrai car un produit de matrices inversibles est inversible.

6. Seuls b et c sont vrais. Pour (x, y) ∈R2, posons M(x, y) := xI2 + yJ =
(

x+y y
0 x+y

)
.

Soit (x, y) ∈ R2. Comme M(x, y) est triangulaire supérieure, elle est inversible si et seulement
si aucun de ses coefficients diagonaux n’est nul, ie x + y ̸= 0.

La stabilité par produit vient d’un calcul élémentaire en remarquant que J2 = (
1 2
0 1

)= 2J−I2 ∈ E.

Soit (x, y) ∈R2. On a M(x, y)2 = x2I2 +2x yJ+ y2J2 =
(

x2+2x y+y2 2x y+2y2

0 x2+2x y+y2

)
. Ainsi :

M(x, y)2 = M(x, y) ⇐⇒
{

x2 +2x y + y2 = x + y

2x y +2y2 = y

⇐⇒
{

(x + y)(x + y −1) = 0

y
(
2x +2y −1

) = 0

⇐⇒ y = 0 ∧ x(x −1) = 0

⇐⇒ (x, y) = (0,0) ∨ (x, y) = (1,0)

Les seules solutions de X2 = X dans E sont donc M(0,0) = 0 et M(1,0) = I2.

Enseignements à tirer de cet exercice

Attention au 6., X(X−I2) = 0 n’équivaut pas à X = 0 ou X = I2 directement (un produit de matrices
non nulles peut être nul).

3 �

1. Un calcul donne A3 −A = 4I3.

2. On a A 1
4 (A2 − I3) = I3, ainsi A est inversible et A−1 = 1

4 (A2 − I3) = 1
4

(
2 −4 2
1 −2 −1
1 2 −1

)
.

4 �

On échelonne puis réduit le système en appliquant l’algorithme de Gauss-Jordan :
1 −2 1 1

1 1 2 2

1 −8 −1 −1

 ∼


1 −2 1 1

0 3 1 1

0 −6 −2 −2

 ∼


1 −2 1 1

0 1 1/3 1/3

0 0 0 0

 ∼


1 0 5/3 5/3

0 1 1/3 1/3

0 0 0 0


On en déduit l’ensemble des solutions

{(
5−5z

3
,

1− z

3
, z

)
; z ∈R

}
.

5 �
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Par la méthode du pivot, le système est équivalent à


x + 2y − z = a

y + z = b +2a

0 = a +b + c

.

Il admet une solution si et seulement si a +b + c = 0. Dans ce cas, on trouve l’ensemble de solutions
suivant :

{ (2c −a +3λ, a − c −λ,λ) ; λ ∈R }

6 �

1. On trouve (A+ I3)(A− 2I3) = 0. Ainsi, A2 − A = 2I3, d’où A

(
A− I3

2

)
=

(
A− I3

2

)
A = I3 et donc A est

inversible d’inverse A−1 = A− I3

2
·

2. Puisque A2 = A+2I3, on a B2 = A2 +2A+ I3

9
= 3A+3I3

9
= B et C2 = A2 −4A+4I3

9
= −3A+6I3

9
= C.

On en déduit que Bn = B et Cn = C pour tout entier naturel n non nul.

3. Comme B et C commutent, on a CB = BC = (−A+2I3)(A+ I3)

9
= −A2 +A+2I3

9
= 0. On remarque

que A = 2B−C. Comme B et C commutent, on peut appliquer le binôme, pour tout n ∈N∗ :

An = (2B−C)n =
n∑

k=0

(
n

k

)
(2B)k (−C)n−k = 2nBn + (−1)nCn = 2nB+ (−1)nC

= 2n +2(−1)n

3
I3 + 2n + (−1)n+1

3
A

car BC = CB = 0 implique que, pour tout 0 < k < n, Bk Cn−k = (BC)Bk−1Cn−k−1 = 0.

7 �

On applique l’algorithme de Gauss-Jordan :
1 0 −1 1 0 0

1 1 1 0 1 0

1 1 2 0 0 1

∼


1 0 −1 1 0 0

0 1 2 −1 1 0

0 1 3 −1 0 1

∼


1 0 −1 1 0 0

0 1 2 −1 1 0

0 0 1 0 −1 1

∼


1 0 0 1 −1 1

0 1 0 −1 3 −2

0 0 1 0 −1 1


Ainsi A est inversible et A−1 =

(
1 −1 1−1 3 −2
0 −1 1

)
.

8 �

Analyse : si (x1, . . . , xn) est solution, alors il existe λ ∈R tel que ∀i ∈ �1,n�, xi = λ.

Synthèse : soit λ ; (x1, . . . , xn) = (λ, . . . ,λ) est solution si et seulement si nλ= 1−λ, ie λ= 1

n +1
·

L’ensemble des solutions est

{(
1

n +1
, . . . ,

1

n +1

)}
.
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9 �

1. Puisque les matrices A et B sont symétriques, on a :

M⊤M = (AB−BA)⊤(AB−BA) = (
B⊤A⊤−A⊤B⊤)

(AB−BA) = (BA−AB)(AB−BA)

= BA2B− (BA)2 − (AB)2 +AB2A

Comme tr
(
BA2B

)= tr
(
A2B2

)
, tr

(
AB2A

)= tr
(
A2B2

)
et tr(BABA) = tr(ABAB), on a par linéarité de la

trace :
tr

(
M⊤M

)= 2
(
tr

(
A2B2)− tr

(
(AB)2))

2. La matrice M étant à coefficients réels, on remarque que

tr
(
M⊤M

) = n∑
i=1

(
M⊤M

)
i ,i =

n∑
i=1

n∑
j=1

M2
i , j ⩾ 0

D’où, par la question précédente : tr
(
A2B2

)
⩾ tr

(
(AB)2

)
.

10 �

Soit i ̸= j . La permutation des colonnes Ci et C j peut s’obtenir par la séquence suivante :

Ci ← Ci +C j , C j ←−C j , C j ← C j +Ci , Ci ← Ci −C j

11 �

Par les opérations C1 ← C1−(C2+···+Cn )
2−n , puis Ci ← Ci −C1 pour i ∈ �2,n� effectuées sur M, on obtient In .

Ainsi M est inversible et son inverse s’obtient en effectuant les mêmes opérations sur In :

M−1 =



λ −λ . . . −λ
−λ µ λ . . . λ

... λ
. . .

. . .
...

...
...

. . .
. . . λ

−λ λ . . . λ µ


où λ := 1

2−n
et µ := 3−n

2−n

12 �

1. Soit (M,N) ∈Mp (R)2 et (i , j ) ∈ �1, p�2. On a, par l’inégalité triangulaire pour la valeur absolue :

|Mi , j +Ni+ j | ⩽ |Mi , j |+ |Ni , j | ⩽ ∥M∥+∥N∥
Ainsi ∥M+N∥ ⩽ ∥M∥+∥N∥. De même :

∣∣(MN)i , j
∣∣ = ∣∣∣∣∣ p∑

k=1
Mi ,k Nk, j

∣∣∣∣∣ ⩽ p∑
k=1

∣∣Mi ,k
∣∣ ∣∣Nk, j

∣∣ ⩽ p∑
k=1

∥M∥∥N∥ = p∥M∥∥N∥

Ainsi ∥MN∥ ⩽ p∥M∥∥N∥.
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2. On raisonne par récurrence. Pour tout m dans N∗, on note HR(m) la propriété : pour tout
(M1, . . . ,Mm) dans Mp (R)m , on a∥∥∥∥∥ m∑

i=1
Mi

∥∥∥∥∥ ⩽
m∑

i=1
∥Mi∥ et

∥∥∥∥∥ m∏
i=1

Mi

∥∥∥∥∥ ⩽
m∏

i=1
∥Mi∥

Le résultat est évident pour m = 1 et pour m = 2 par la question précédente.

Soit m ∈N∗. Supposons HR(m) vraie. Soit (M1, . . . ,Mm+1) dans Mp (R)m+1. Par HR(2) et HR(m),
on a ∥∥∥∥∥m+1∑

i=1
Mi

∥∥∥∥∥ ⩽

∥∥∥∥∥ m∑
i=1

Mi

∥∥∥∥∥+∥Mm+1∥ ⩽
m+1∑
i=1

∥Mi∥

De même : ∥∥∥∥∥m+1∏
i=1

Mi

∥∥∥∥∥ ⩽ p

∥∥∥∥∥ m∏
i=1

Mi

∥∥∥∥∥ ∥Mm+1∥ ⩽ pm
m+1∏
i=1

∥Mi∥

3. a. On a, par distributivité puis télescopage :

n−1∑
i=0

Ai (A−B)Bn−1−i =
n−1∑
i=0

(
Ai+1Bn−(i+1) −Ai Bn−i

)
= AnB0 −A0Bn = An −Bn

b. Par les questions précédentes :

∥An −Bn∥ ⩽ p2
n−1∑
i=0

∥∥∥Ai (A−B)Bn−1−i
∥∥∥ ⩽ p2+n−1−2

n−1∑
i=0

∥A∥i ×∥A−B∥×∥B∥n−1−i

⩽ pn−1∥A−B∥
n−1∑
i=0

∥A∥i ×∥B∥n−1−i = pn−1∥A−B∥ ∥A∥n −∥B∥n

∥A∥−∥B∥
car ∥A∥ ̸= ∥B∥. Cette condition impose également A ̸= B donc ∥A−B∥ > 0 (A−B a au moins un

coefficient non nul). Ainsi

∥∥An −Bn
∥∥∥∥A−B

∥∥ ⩽ pn−1

∥∥A
∥∥n −∥∥B

∥∥n∥∥A
∥∥−∥∥B

∥∥ ·
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