
Ô AN 7 Fonctions convexes

La convexité est une grande pourvoyeuse d’inégalités.

Fresque de la table de la sagesse, monastère de Gracanica (Kosovo)
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1. Quizz

1 � 4 Vrai ou faux ? f

1. Il existe une fonction f :R→R convexe et strictement décroissante.

2. Pour tout x ∈
[

0,
π

4

]
, tan x ⩽ 4

πx·
3. La fonction cosinus est concave sur [0,π].

4. Pour tous réels strictement positifs x, y , z et t , on a x y zt ⩽
(x + y + z + t )4

44
·

5. Pour f :R→R convexe et g :R→R concave, f − g est convexe.

6. Une fonction convexe f :R+ →R est nécessairement minorée.

7. La fonction f :R→R définie par x 7→ |x +1|+ |x −1| est convexe.

8. Une fonction convexe f : [0,1] →R convexe est nécessairement continue en tout point de [0,1].

9. Soit f :R→R deux fois dérivable telle que f ′′ ⩾ 0 et f (0) = 0. Pour tout réel x, on a x f ′(x)⩾ f (x).

10. Soit f :R→R continue. La fonction f est convexe si et seulement si f
∣∣
R+ et f

∣∣
R− sont convexes.

11. La fonction f :R→R définie par x 7→ |x|3 est convexe.

2. Exercices élémentaires

2 � 4 Fonctions convexes et concaves

Soit I un vrai intervalle deR. Déterminer les fonctions f : I →R convexes et concaves.

3 � 4 Fonctions convexes positives s’annulant deux fois

Soit f : [a,b] →R convexe positive vérifiant f (a) = f (b) = 0. Montrer que f est nulle.

4 � 4 Moyennes arithmétiques et harmoniques

Soit n ∈N∗ et u1, . . ., un des réels strictement positifs. En utilisant la convexité, établir que

1

n

(
1

u1
+·· ·+ 1

un

)
⩾

n

u1 +·· ·+un

5 � 4 Figures imposées

Démontrer par la convexité que, pour tout θ> 0 et tout x ∈ ]0,θ[, on a ln(1+θ)
θ x < ln(1+x) < x.
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6 � 4 Concavité de ln◦ ln et applications f

1. Soit f une fonction dérivable sur R et concave. Démontrer que, pour tout k dans N, f (k + 1)−
f (k)⩽ f ′(k)

2. Démontrer que la fonction x 7→ lnln x est concave sur son intervalle de définition.

3. Démontrer que la suite de terme général un :=
n∑

k=2

1

k lnk
tend vers +∞.

4. Démontrer que ln
(

a+b
2

)
⩾

p
ln(a) ln(b) pour tous réels a et b strictement supérieurs à 1.

7 � 4 Un encadrement

Montrer que pour x ∈ [0,1], on a 1+x ⩽ ex ⩽ 1+x(e −1).

8 � 4 Variations arithmético-géométriques f

1. Montrer que pour tout n ∈N∗, (x1, . . . , xn) ∈Rn+, on a n
p

x1 . . . xn ⩽
x1 + . . .+xn

n
·

2. En déduire que ∀(a,b,c) ∈R3+, a3 +b3 + c3 ⩾ 3abc.

3. Prouver que ∀(a,b,c) ∈R3+, (a +b + c)3 ⩾ 27abc.

4. Soit n ⩾ 1. Établir que
np

n!⩽
n +1

2
·

9 � 4 Une inégalité de convexité f

Montrer que, pour tous x ∈ [−1,1] et λ ∈R, eλx ⩽ coshλ+x sinhλ.

3. Exercices classiques plus techniques

10 � 4 Puissances ff

Soit a et b deux réels positifs tels que a+b = 1. Établir que ∀(x, y) ∈ (R+)2, 1+xa yb ⩽ (1+x)a(1+ y)b .

11 � 4 Sous-additivité et concavité ff

Soit f :R∗+ →R une fonction concave positive.

1. Montrer que
f (x + y)

x + y
⩽

f (x)

x
pour tous réels x et y strictement positifs.

2. En déduire que f est sous-additive, i.e. pour tous réels x et y strictement positifs, f (x + y) ⩽
f (x)+ f (y).

3. En déduire que (x + y)α⩽ xα+ yα pour tous réels x et y strictement positif et α ∈ [0,1].
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4. Indications

1 �

On reconnaîtra l’inégalité AG au 4.

2 �

Revenir à l’interprétation de la convexité via les cordes.

3 �

Revenir au propriétés des cordes.

4 �

Appliquer l’inégalité de Jensen.

5 �

Il est question de stricte concavité.

6 �

Il y a du telescopage dans l’air.

7 �

Utiliser une corde et une tangente.

8 �

C’est du cours.

9 �

Utiliser une corde.

10 �

Passer au logarithme.

11 �

Au 1., il s’agit de montrer la décroissance de x 7→ f (x)
x · Pour cela, on remarquera que

∀x > 0 ,
f (x)

x
= f (x)− f (0)

x
+ f (0)

x

LLG . HX 6 4
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5. Solutions

1 �

1. Vrai. Par exemple, f : x 7→ e−x (la convexité de f est assurée car f ′′ = f ⩾ 0).

2. Sur
[
0, π4

]
, tan′′ x = 2(tan x)

(+1tan2 x
)
⩾ 0. La tangente est donc convexe sur cet intervalle. Puisque

la corde de la tangente aux points d’abscisses 0 et π
4 est d’équation y = 4

πx, on en déduit que pour

tout x ∈
[

0,
π

4

]
, tan x ⩽ 4

πx·
3. C’est faux car cos′′ =−cos n’est pas négative sur [0,π].

4. Vrai. C’est un cas particulier de l’inégalité arithmético-géométrique.

5. Vrai car −g est convexe (car f est concave) et donc f −g est convexe en tant que somme de fonc-
tions convexes.

6. C’est faux, la fonction x 7→ −x est un contre-exemple évident.

7. Vrai. La fonction f est convexe en tant que somme de deux fonctions convexes. Pour a ∈ R, la
convexité de g : x 7→ |x −a| est facile à justifier via l’inégalité triangulaire :

∀(x, y, t ) ∈R2 × [0,1] ,
∣∣t x + (1− t )y −a

∣∣= ∣∣t (x −a)+ (1− t )(y −a)
∣∣⩽ |t (x −a)|+ ∣∣(1− t )(y −a)

∣∣︸ ︷︷ ︸
=t |x−a|+(1−t )|y−a|

8. Faux.

Voici un contre-exemple :

f : x 7→
{

1 si x = 0

x si x ∈ ]0,1]

Cette fonction est bien convexe : toutes ses
cordes sont situées au-dessus de sa courbe.

9. Vrai. La tangente au point x admet pour équation Y = f (x)+ f ′(x)(X−x). Par convexité de f , on a
f (X)⩽ f (x)+ f ′(x)(X−x) pour tout réel X. En particulier, pour X = 0, on obtient x f ′(x)⩾ f (x).

10. C’est faux. Voici un contre-exemple :

f : x 7→
{

1+2x si x < 0

1−2x si x ⩾ 0

Les fonctions affines de part et d’autre de
0 sont convexes (les fonctions affines sont
convexes et concaves) mais le raccord des
deux donne une fonction non convexe (la
fonction obtenue est ici est par ailleurs
concave).
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Commentaire

Nous apportons quelques précisions au sujet de la question posée
dans ce quizz.

Il est vrai que, si f est convexe, alors ses restrictions àR+ et àR−
le sont aussi (comme toute autre restriction à un vrai intervalle de
R).

C’est la réciproque qui est fausse. Cependant, un raccord par
continuité en 0 tel que la pente p− en 0− et la pente p+ en 0+
vérifient p− ⩽ p+ donnera clairement une fonction convexe (cf.
la figure ci-contre).

11. Vrai. Il est facile de vérifier que f est dérivable
surR et

f ′ : x 7→


−3x2 si x < 0

0 si x = 0

3x2 si x > 0

La fonction f ′ étant croissante sur R, f est
convexe surR.

Voir ci-contre la fonction en rouge et sa déri-
vée en vert.

Commentaire

La dérivabilité en 0 vient de l’étude du taux d’accroissement en 0 :

f (x)

x
= signe(x)x2 −−−→

x→0
0

2 �

Soit (a,b) ∈ I2 tel que a < b. La courbe de f sur [a,b] est située au-dessus et au-dessous de la corde
joignant les points d’abscisses a et b, elle est donc confondue avec cette corde. On en déduit que f
est affine sur [a,b]. Comme ceci est vrai pour tous a et b dans I, f est affine sur I.

3 �

Comme le segment joignant les points de coordonnées (a,0) et (b,0) est une corde du graphe de f , la
courbe de f est situé sous l’axe des abscisses par convexité de f . Comme f est positive, on en déduit
que f est nulle.
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4 �

La fonction x 7→ 1
x est convexe sur R∗+ car deux fois dérivable avec f ′′(x) = 2

x3 > 0 pour tout x > 0. On
déduit de l’inégalité de Jensen que

1

n

(
1

u1
+·· ·+ 1

un

)
︸ ︷︷ ︸

= 1
n

∑n
i=1 f (ui )

⩾
n

u1 +·· ·+un︸ ︷︷ ︸
= f

( 1
n

∑n
i=1 ui

)

5 �

La fonction f : x 7→ ln(1+x) est strictement concave surR+. En effet ∀x > 0 , f ′′(x) = −1

(1+x)2
< 0.

Son graphe est donc situé sous ses tangentes et au-dessus de ses cordes. L’équation de la tangente
en 0 est y = f (0)+ f ′(0)x = x. Donc ln(1+x) < x pour tout réel x strictement positif.

Soit θ> 0. L’équation de la corde joignant les points d’abscisses points 0 et θ est y = ln(1+θ)
θ x donc

∀x ∈]0,θ[ ,
ln(1+θ)

θ
x < ln(1+x)

6 �

1. Soit k ∈N. La courbe de f est située au-dessous de sa tangente au point d’abscisse k. Ainsi ∀ t ∈
R, f (t )⩽ f (k)+ (t −k) f ′(k) et donc f (k +1)− f (k)⩽ f ′(k) (pour t = k +1).

2. L’expression f (x) := loglog x est définie pour x > 1. Elle est indéfiniment dérivable comme com-
posée de deux fonctions indéfiniment dérivables et, pour tout x > 1,

f ′(x) = 1

x ln x
et f ′′(x) = − ln x −1

(x ln x)2
< 0

donc f est bien une fonction concave.

3. On remarque que, pour tout n ⩾ 2,

un =
n∑

k=2
f ′(k)⩾

n∑
k=2

(
f (k +1)− f (k)

)
⩾ f (n +1)− f (2)

par concavité de f sur ]1,∞[ et le 1. Comme f (n +1) −−−−−→
n→+∞ +∞, on a aussi un −−−−−→

n→+∞ +∞.

4. Comme f est concave, pour tous réels a > 1 et b > 1

f

(
a +b

2

)
⩾

f (a)+ f (b)

2
= ln

p
ln a lnb

On obtient l’inégalité voulue en composant par exp (qui est croissante).

7 �

L’exponentielle est convexe sur R et les deux fonctions affines encadrantes représentent la tangente
de cette fonction en x = 0 et la corde joignant les points d’abscisses x = 0 et x = 1.

LLG . HX 6 7
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8 �

1. La fonction logarithme népérien est concave surR∗+. Pour n ⩾ 2 et des réels x1, . . . , xn strictement
positifs, on déduit de l’inégalité de Jensen que :

ln
x1 . . .+xn

n
⩾

ln x1 + . . .+ ln xn

n

i.e. ln
x1 . . .+xn

n
⩾ ln n

p
x1 . . . xn d’où le résultat par croissance de la fonction exponentielle.

2. D’après l’inégalité arithmético-géométrique, a3+b3+c3

3 ⩾ 3p
a3b3c3 = abc d’où le résultat en multi-

pliant par trois.

3. D’après l’inégalité arithmético-géométrique, a+b+c
3 ⩾ 3pabc > 0 donc, en élevant au cube, 1

27 (a +
b + c)3 ⩾ abc d’où le résultat en multipliant par 27.

4. D’après l’inégalité arithmético-géométrique

n +1

2
= n(n +1)

2n
= 1+ . . .+n

n
⩾ np1. . .n = np

n!

9 �

Fixons λ ∈R. La fonction f : x 7→ eλx est convexe (sa dérivée seconde f ′′ = λ2 f est positive) ainsi sa
courbe est située sous la corde joignant ses points d’abscisses −1 et 1.

Cette corde a pour équation y = f (−1)+ f (1)− f (−1)
2 (x + 1), c’est-à-dire y = coshλ+ x sinhλ. On a

donc
∀x ∈ [−1,1] , eλx ⩽ coshλ+x sinhλ

10 �

L’inégalité étant banale pour x = 0 ou y = 0, on peut supposer que x et y sont strictement positifs.
Par stricte croissance du logarithme népérien surR∗+, l’inégalité est alors équivalente à

ln
(
1+ea ln x+b ln y)

⩽ a ln
(
1+e ln x)+b ln

(
1+e ln y)

Comme a+b = 1, on reconnaît une inégalité de convexité surR pour la fonction u ∈R 7→ ln
(
1+eu

)
.

On vérifie sans peine que cette fonction est effectivement convexe surR en tant que fonction deux
fois dérivable avec

∀u ∈R , f ′′(u) = eu(
1+eu

)2 > 0

11 �

1. La fonction f étant concave, son taux d’accroissement en 0, τ : x 7→ f (x)− f (0)
x , est décroissante sur

R∗+. De plus, puisque f (0)⩾ 0, x 7→ f (0)
x est décroissante surR∗+. On en déduit que leur somme est

aussi décroissante surR∗+ :

x 7→ f (x)

x
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2. Soit x > 0 et y > 0. Quitte à permuter x et y , on peut supposer que x ⩽ y . On déduit du 1. que

f (x + y) ⩽
x + y

x
f (x) = f (x)+ f (x)

x
y ⩽ f (x)+ f (y)

puisque f (x)
x ⩽ f (y)

y ·
3. Par le 2., il suffit de justifier que, pour α ∈ [0,1], la fonction f : x 7→ xα est concave et positive sur
R∗+. La fonction f est deux fois dérivable et f ′′ : x 7→ α(α−1)xα−2 est négative.

LLG . HX 6 9
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