
Ô AN 6 Fonctions dérivables

Le calcul occupe une place importante à égalité avec les applications des théo-
rèmes globaux (Rolle, accroissements finis). Ce chapitre sera illustré par les fonc-
tions trigonométriques réciproques.

Mains en prière, Albrecht Dürer
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1. Quizz

1 � 4 Vrai ou faux ? f

1. Une fonction dérivable sur [0,1] est bornée.

2. Une fonction dérivable à droite surR et de dérivée à droite nulle est constante.

3. La fonction f : x 7→ x|x| est de classe C 1 surR.

4. Une fonction lipschitzienne surR est dérivable surR.

5. Si f ′ est positive sur un vrai intervalle I, alors f est croissante sur I.

6. Si f ′ = 0 sur D f , alors f est constante sur D f .

7. Si f est dérivable et strictement croissante, alors f ′ est strictement positive.

8. Si f ′ s’annule en 0, alors f admet un extremum local en 0.

9. Une fonction f :R→R dérivable est paire si et seulement si f ′ est impaire.

10. Une fonction f :R→R dérivable est impaire si et seulement si f ′ est paire.

11. Pour tout (x, y) ∈R2 ,
∣∣arctan x −arctan y

∣∣⩽ |x − y |.
12. Si f :R→R est dérivable et f ′(0) > 0, alors ∃η> 0 ∀x ∈ [0,η[ , f (x)⩾ f (0).

13. Pour tout x ∈ [
π
2 ,π

]
, arcsin(sin x) =π−x.

14. Pour tout x ∈ [−1,1] , cos(arccos x) = x.

15. Pour tout x ∈ [−1,1[ , arctan x = arcsin x

arccos x
·

16. L’ensemble de définition de l’expression arcsin
( x

x +1

)
estR+.

2 � 4 QCM sur la dérivation f

1. Soit f :R→R définie par f : x 7→ 2xex2
.

a. f est bijective ;

b. f −1 est dérivable surR ;

c.
(

f −1
)′

(0) = 1 ;

d. f −1 est C∞ surR.

2. Soit f :R+ →R continue, dérivable surR∗+, avec f ′ strictement décroissante et f (0) = 0.

a. ∀x > 0, f (x)⩾ x f ′(x) ; b. x 7→ f (x)

x
est croissante surR∗+.

3. Soit u0 ∈ [0,1] et ∀n ∈N, un+1 = cos(un) et ℓ l’unique solution de ℓ= cosℓ. Vrai ou faux ?

a. ∀n ∈N, un ∈ [0,1] ;

b. (un)n⩾0 est monotone ;

c. ∀n ∈N, |un −ℓ |⩽ sin(1)n |u0 −ℓ | ;
d. un −−−−−→

n→+∞ ℓ.
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4. Soit f :R→R dérivable telle que ∃ℓ ∈R, f ′(x) −−−−−→
x→+∞ ℓ. Vrai ou faux ?

a. ℓ= 0 =⇒ ∃L ∈R, f (x) −−−−−→
x→+∞ L ;

b. f (x +1)− f (x) −−−−−→
x→+∞ ℓ ;

c. ℓ ̸= 0 =⇒ f monotone au vois. de +∞ ;

d. ℓ> 0 =⇒ f (x) −−−−−→
x→+∞ +∞ ;

e. ℓ< 0 =⇒ f (x) −−−−−→
x→+∞ −∞ ;

5. Soit f :R+ →R dérivable telle que ∃ℓ ∈R, f (x) −−−−−→
x→+∞ ℓ. Vrai ou faux ?

a. f ′(x) −−−−−→
x→+∞ 0 ; b. ∃(xn)n⩾0 ∈RN+ ,

xn −−−−−→
n→+∞ +∞ et f ′(xn) −−−−−→

n→+∞ 0

3 � 4 QCM sur les fonctions trigonométriques réciproques

1. Pour tout x ∈ [0,1], l’expression arcsin
p

1−x2 est égale à :

a. arcsin x b. arccos x c. π−arccos x

2. Pour tout x ∈R, l’expression cos(arctan x) est égale à :

a.
1p

x2 +1
b.

√
x2 +1 c.

1

x2 +1

3. Pour tout x ∈R, l’expression sin(arctan x) est égale à :

a.
|x|p

x2 +1
b.

xp
x2 +1

c.
x

x2 +1

4. Pour tout (x, y) ∈R2, l’expression sinh2(x)cos2(y)+cosh2(x)sin2(y) est égale à :

a. sinh2 x + sin2 y b. cosh2 x −cos2 y c. cosh2 x +cos2 y

2. Exercices élémentaires

4 � 4 Un classique

Soit f ∈C 2
(
[a,b],R

)
telle que f ′(a) = f (a) et f ′(b) = f (b). Montrer que ∃c ∈ ]a,b[, f ′′(c) = f (c).

On pourra considérer g : x 7→ ex (
f ′(x)− f (x)

)
.

5 � 4 Étude d’une suite récurrrente

Étudier la suite définie par u0 ∈R+, ∀n ∈N, un+1 =
p

4+3un en appliquant l’inégalité des accroisse-
ments finis.
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6 � 4 Un raccord en 0

Soit λ ∈R et f la fonction définie surR par ∀x ∈R, f (x) =


λx si x ⩽ 0

x2

ln(1+x)
si x > 0

Étudier la dérivabilité de f en 0.

7 � 4 Un prolongement classique

Soit f la fonction définie surR∗ par ∀x ∈R∗, f (x) =
 exp

(
−1

x

)
si x > 0

0 si x < 0

1. Montrer que f est prolongeable par continuité en 0.

2. Étudier la dérivabilité en 0 de ce prolongement.

8 � 4 Figures imposées (composées) f

Calculer les dérivées des fonctions définies par les expressions suivantes. On précisera systématique-
ment sur quelle partie deR ces fonctions sont dérivables.

1. f (x) = ln(ln(x)) ;

2. f (x) = arctan(ln(x)) ;

3. f (x) = ln
(√

1−2sin2(x)
)

;

4. f (x) = cos(x)+x sin(x)

sin(x)−x cos(x)
;

5. f (x) =
(
cos2(x)+ 3

2

)
sin(2x) ;

6. f (x) = arctan

(√
1−x

1+x

)
.

9 � 4 Une équation f

Résoudre l’équation arctan(2x) = arccos x d’inconnue x ∈ [−1,1].

10 � 4 Une formule f

Montrer que
π

4
= arctan

(
1

7

)
+2arctan

(
1

3

)
.

11 � 4 Étude d’une fonction f

On pose f : x 7→ x arctan

(
1

x

)
·

1. Établir que ∀y ∈R+,
y

y2 +1
⩽ arctan y ⩽ y .

2. Déterminer l’ensemble de définition et la parité de f .
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3. Déterminer les limites de f en 0+ et en +∞. Pour cette dernière, on utilisera l’encadrement de
l’exercice précédent.

4. Dresser le tableau de variation de f puis tracer sa courbe représentative dans un repère ortho-
normé.

12 � 4 Somme d’une série f

Pour tout n ∈N∗, on pose un :=
n∑

k=1
arctan

(
1

2k2

)
·

1. Démontrer que pour tout x > 1, arctan
( x

x −1

)
−arctan

(
x +1

x

)
= arctan

(
1

2x2

)
·

2. En déduire que la suite (un)n⩾1 a une limite réelle que l’on calculera.

13 � 4 Un prolongement C 1 f

Montrer que la fonction x 7→ x2 ln |x| est prolongeable en une fonction de classe C 1 surR tout entier.

14 � 4 Graphes tangents f

Soit x0 ∈R et ( f , g ) ∈C 1(R,R) tels que f (x0) = g (x0) et ∀x ∈R, f (x) ⩽ g (x).

Montrer que f ′(x0) = g ′(x0).

15 � 4 La fonction argtanh f

1. Montrer que la fonction tanh réalise une bijection deR sur ]−1,1[.

2. Établir que tanh−1 est dérivable et déterminer sa dérivée.

3. Exercices classiques plus techniques

16 � 4 Une condition suffisante de monotonie f

Soit f : R → R de classe C 1 et x0 ∈ R tel que f ′(x0) ̸= 0. Montrer qu’il existe α > 0 tel que f soit
strictement monotone sur [x0 −α, x0 +α].

17 � 4 Une suite de dérivées ff

Soit f la fonction définie surR+ par f : x 7→
p

1+x2.

1. Trouver une équation différentielle linéaire d’ordre un vérifiée par f .

LLG . HX 6 5



2025-2026 Laurent Kaczmarek

2. En déduire à l’aide de la formule de Leibniz que pour tout n positif et tout x réel,(
1+x2) f (n+2)(x)+ (2n +1)x f (n+1)(x)+ (

n2 −1
)

f (n)(x) = 0

18 � 4 Tangentes et cordes ff

Soit f :R→R dérivable telle que f ′(x) −−−−−→
x→+∞ 0. Démontrer que, ∀a ∈R, f (t +a)− f (t ) −−−−−→

x→+∞ 0.

19 � 4 Étude d’un opérateur ff

On note D l’ensemble des fonctions f :R+ →R+ deux fois dérivables, bijectives et telles que f ′ > 0.

Pour tout f dans D, on pose L ( f ) := (
ln◦ f ′)′.

1. Établir que f : x 7→ ex −1 appartient à D et expliciter f −1.

2. Soit f ∈D. Déterminer f (0) et lim
x→+∞ f (x).

3. Justifier que (D,◦) est un groupe, i.e. ∀(u, v) ∈D2, u ◦ v ∈D et u−1 ∈D.

4. Justifier que, pour tout f dans D, la fonction L ( f ) est bien définie et l’exprimer en fonction des
dérivées de f .

5. Soit (u, v) ∈D2. Montrer que L (v ◦u) = (L (v)◦u)×u′+L (u).

6. Soit v ∈D. Exprimer L
(
v−1

)
en fonction de v ′′, v ′, v−1.

7. Soit f un élément de D et k dansN∗. Montrer que

L
(

f k
)
=

k−1∑
i=0

(
L ( f )◦ f i

)
×

(
f i

)′
où f j désigne la j -ème itérée de f .
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4. Indications

1 �

Pour construire des exemples ou des contre-exemples, on pourra utiliser des fonctions usuelles
simples ou des fonctions définies par morceaux.

2 �

Au 5.b., on pourra appliquer le TAF à f sur l’intervalle [n,n +1].

3 �

Au 4., on exploitera les relations cos2+sin2 = 1 et cosh2−sinh2 = 1.

4 �

Appliquer le théorème de Rolle à g .

5 �

La dérivée de x 7→p
4+3x est bornée en valeur absolue par 3

4 ·

6 �

La fonction f est dérivable en 0 si et seulement si λ= 1.

7 �

La fonction est prolongeable par continuité en 0 par f (0) := 0. Ce prolongement est dérivable en 0 et
f ′(0) = 0.

8 �

Il s’agit de dériver des composées.

9 �

Composer par la tangente.

10 �

On pourra utiliser les nombres complexes ou la formule d’addition de la tangente.

11 �

Au 1., on peut étudier deux fonctions ou bien appliquer le TAF.

12 �

Le 1. est une invitation au télescopage.
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13 �

Après prolongelment par continuité en 0, on peut par exemple appliquer le théorème de la limite de
la dérivée.

14 �

Une simple figure nous mène à la conjecture f ′(x0) = g ′(x0).

15 �

On trouve que ∀y ∈ ]−1,1[ ,
(
tanh−1)′ (y) = 1

1− y2
·

16 �

Montrer qu’il existe un intervalle de la forme [x0 −α, x0 +α] sur lequel f ′ est positive.

17 �

On trouve
(
1+x2

)
f ′(x) = x f (x). Appliquer la formule de Leibniz au b).

18 �

Appliquer le TAF.

19 �

Au 1., on trouve f −1 :R+ →R+, y 7→ ln(1+ y). Raisonner par récurrence à la dernière question.

LLG . HX 6 8
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5. Solutions

1 �

1. Vrai. Une fonction dérivable est continue, il suffit d’appliquer le théorème de Weierstrass.

2. Faux. La partie entière est un contre-exemple évident.

3. Vrai. Sur R∗+ et R∗−, f est polynomiale donc de classe C 1. Le taux d’accroissement de f en 0 est
x ∈R∗ 7→ |x| donc tend vers 0 quand x tend vers 0 : f est dérivable en 0 avec f ′(0) = 0. De plus, sur
R∗, on a f ′(x) = 2signe(x)x. La dérivée f ′ est donc bien continue en 0.

4. Faux. La valeur absolue est un contre-exemple évident (elle est 1-lipschitzienne par l’inégalité
triangulaire).

5. Vrai (cf. cours).

6. Faux. Mais c’est vrai si l’ensemble de définition de f est un intervalle.

7. Vrai (cf. cours).

8. Faux. La fonction f : [0,1] →R définie par f (x) = x est un contre-exemple évident pour a = 1.

9. Vrai. L’implication =⇒ est évidente (il suffit de dériver membre à membre dans la relation f (−x) =
f (x)). Supposons f ′ impaire. La fonction g : x 7→ f (−x)− f (x) est dérivable et sa dérivée est nulle
surR, elle est donc constante. Comme g (0) = 0, g = 0.

10. Faux. L’implication =⇒ est vraie (adapter la preuve de la question précédente). La fonction f :
x 7→ x +1 est un contre-exemple évident à la réciproque.

11. Vrai. On applique l’IAF à l’arctangente (sa dérivée est majorée en valeur absolue par 1).

12. Vrai. On utilise le fait qu’une fonction ayant une limite non nulle ℓ en un point a deR est du signe
de ℓ au voisinage de a. Il existe η > 0 tel que le taux d’accroissement de f en 0 soit positif sur
]−η,η[\{0}. En particulier, pour x ∈ ]0,η[, on a

f (x)− f (0)

x
> 0

d’où f (x)⩾ f (0).

13. Vrai car
sin(π−x) = sin(x) et −π/2⩽π−x ⩽π/2

pour x ∈ [π/2,π].

14. Vrai, c’est une conséquence immédiate de la définition de l’arccosinus.

15. Faux. Cex x =−1.

16. Faux. L’expression est définie si set seulement si |x|⩽ |x +1|. On trouve [−1/2,+∞[.

2 �

1. Seuls a., b. et d. sont vrais. La fonction f est de classe C∞ sur R et f ′ > 0 par un calcul facile.
Comme f (x) −−−−−→

x→±∞ ±∞, elle est bijective (corollaire du TVI). Comme f ′ ne s’annule pas, f −1 a

la même classe que f (cf. le cours). Comme f ′(0) = 2 et f (0) = 0, on a
(

f −1)′ = 1/2 (théorème de
dérivation d’une bijection réciproque).
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2. Seul a. est vrai. Soit x ∈R∗+. Par le TAF, il existe cx ∈ ]0, x[ tel que f (x) = f (x)− f (0) = x f ′(cx). On
conclut en remarquant que f ′(cx) > f ′(x) par croissance de f ′. Cette inégalité permet de trouver
le signe de la dérivée de x 7→ f (x)/x et de prouver que le b. est faux.

3. Tout est vrai sauf le b. L’intervalle [0,1] est stable par le cosinus d’où le a. On vérifie que la fonction
x 7→ cos(x)− x s’annule en un unique point ℓ de [0,1] (simple étude de ses variations). Sur [0,1],
cos′(x) = −sin(x) est majoré en valeur absolue par sin(1). On déduit de l’IAF que | f (x)− f (ℓ) |⩽
sin(1)|x −ℓ| d’où ∀n ∈N, |un+1 −ℓ |⩽ sin(1)|un −ℓ| puis le c. par une récurrence facile. On déduit
le d. du c. par le théorème d’encadrement ;

4. Tout est vrai sauf le a.

La fonction x 7→
p

x2 +1 est un contre-exemple au a.

Au b., il existe cx entre x et x + 1 tel que f (x + 1)− f (x) = f ′(cx). Comme cx −−−−−→
x→+∞ +∞, on

conclut par composition des limites.

Le c. est vrai car si ℓ ̸= 0, alors f ′ est du signe de ℓ au voisinage de +∞.

Supposons que f ′(x) −−−−−→
x→+∞ ℓ ∈R∗+ Il existe x0 > 0 tel que ∀x ⩽ x0, f ′(x)⩾ ℓ/2. Soit x ⩾ x0. Par

l’IAF entre x0 et x, on a f (x)⩾ f (x0)+ (x −x0)ℓ/2. Ainsi f (x) −−−−−→
x→+∞ +∞ (par encadrement).

Le e. est vrai par application du d. à − f .

5. Seule le b. est vrai.

La fonction x 7→ sin
(
x2

)
p

x +1
est un contre-exemple au a.

Soit n ∈ N. Il existe cn dans [n,n + 1] tel que f (n + 1)− f (n) = f ′(cn). On a bien cn −→ +∞ et
f ′(cn) = f (n +1)− f (n) −−−−−→

n→+∞ 0.

Enseignements à tirer de cet exercice

Le 1. est une simple application du théorème de dérivabilité d’une bijection réciproque.

Au 2., comparer f (x) et x f ′(x) doit faire songer immédiatement au TAF ou l’IAF.

Au 3., c’est une brève étude graphique qui permet d’entrevoir la solution donnée ci-dessus : le
point fixe ℓ est attracteur, on utilise l’IAF.

Le 7.a. est une erreur classique, on y prendra garde. On notera que si f est dérivable et décroît
vers une limite réelle ℓ en +∞, on peut toujours pas en déduire que f ′(x) −−−−−→

x→+∞ 0 mais il est plus

long de construire un contre-exemple (cf. un des exercices de DL sur la dérivation).

3 �

1. Le b. Remarquer que α := arcsin
p

1−x2 vérifie sinα = sinarccos x. Comme α et arccos x appar-
tiennent à [0,π/2], on conclut par stricte croissance du sinus sur cet intervalle.

2. Le a. Exploiter la relation 1+ tan2 = cos−2.

3. Le b. Remarquer que sin = tan×cos et utiliser la question précédente.

4. Les a. et b. Utiliser cos2+sin2 = 1 et cosh2−sinh2 = 1.

LLG . HX 6 10
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4 �

Il suffit d’appliquer le théorème de Rolle à g en remarquant que ∀x ∈ [a,b], g ′(x) = ex
(

f ′′(x)− f (x)
)
.

5 �

On commence par une figure.

Comme, | f ′| semble majoré par un réel stric-
tement inférieur à 1 sur l’intervalle R+ stable
par f , on va essayer d’appliquer l’IAF. Notons
I =R+ et f l’application de I dansR définie par
x 7→ p

4+3x. La suite est bien définie dès que
u0 ⩾ 0 puisque l’on a f (I) ⊂ I.

Un réel x est point fixe de f si et seulement si x ⩾ 0 et x2 = 4+3x, ie x = 4. La seule (et éventuelle !)
limite de (un) est donc 4. La fonction f est dérivable sur I et sur cet intervalle, f ′(x) = 3

2
p

4+3x
⩽ 3

4 .

Par l’IAF, ∀x, y ∈ I, | f (x)− f (y)|⩽ 3
4 |x − y |. Donc, pour tout n ⩾ 0 , puisque un+1 = f (un) et f (4) = 4,

|un+1−4|⩽ 3
4 |un −4| et par une récurrence immédiate, ∀n ∈N, |un −4|⩽ (3

4

)n |u0−4| Ainsi, d’après le
théorème d’encadrement, un −−−−−→

n→+∞ 4.

6 �

Comme x 7→ λx est dérivable surR, f est dérivable à gauche en 0 avec f ′
g (0) = λ. De plus,

f (x)− f (0)

x
= x

ln(1+x)
∼
0+ x d’où

f (x)− f (0)

x
−−−−→
x→0+ 1

Ainsi f est dérivable à droite en 0 et f ′
d (0) = 1. La fonction f est donc dérivable en 0 si et seulement

si λ= 1.

7 �

1. On a clairement f (x) −−−−→
x→0− 0 et f (x) −−−−→

x→0+ 0 (par composition des limites) donc, puisque f n’est

pas définie en 0, f (x) −−−→
x→0

0. Ainsi f est prolongeable par continuité en 0 en posant f (0) = 0.

2. Pour x ∈R∗, on a
f (x)− f (0)

x
=

{
0 si x < 0

si x > 0 1
x exp

(− 1
x

)
Comme ue−u −−−−−→

u→+∞ 0 par croissances comparées, on a par composition des limites que

f (x)− f (0)

x
−−−−→
x→0+ 0

Puisque f (x)− f (0)
x −−−−→

x→0− 0, on a f (x)− f (0)
x −−−→

x→0
0. Ainsi f est dérivable en 0 et f ′(0) = 0.
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8 �

Convenons de dire qu’une fonction est dérivable (sans plus de précision) pour signifier qu’elle est
dérivable sur son ensemble de définition.

1. La fonction ln (la deuxième) est dérivable surR∗+ et (la première) strictement positive sur ]1,+∞[,
donc ln◦ ln est dérivable sur ]1,+∞[ et

∀ x > 1, (ln◦ ln)′(x) = 1

x ln(x)

2. La fonction arctan est dérivable sur R et ln est dérivable sur R∗+, donc arctan◦ ln est dérivable
surR∗+ et

∀ x > 0, (arctan◦ ln)′(x) = 1

x(1+ ln2(x))

3. La fonction sin2 est périodique, de période π. La fonction
p· est dérivable et strictement positive

surR∗+, donc la fonction f est (définie et) dérivable au point x si, et seulement si, 1−2sin2 x > 0,
c’est-à-dire si x est strictement compris entre −π/4 et π/4 (modulo π). Pour de tels x,

f ′(x) = −2sin(x)cos(x)

1−2sin2(x)
=− tan(2x)

On peut faciliter le calcul de la dérivée en remarquant que

ln
√

1−2sin2(x) = 1

2
ln|cos(2x)|

pour tout x ̸=π/4 (mod π/2).

4. La fonction f est définie et dérivable en tout point x tel que sin(x) ̸= x cos(x). Cette équation
possède une infinité de solutions, une dans chaque intervalle de la forme ]−π/2+kπ,π/2+kπ[
(avec k ∈Z). En tout point de son ensemble de définition,

f ′(x) = −x

(sin(x)−x cos(x))2

5. La fonction f est dérivable surR et, pour tout x ∈R,

f ′(x) =−sin2(2)x + (
1+cos(2x)

)
cos(2x)+3cos(2x) = cos(4x)+4cos(2x)

6. Un tableau de signes montre que (1−x)/(1+x) est strictement positif si, et seulement si,−1 < x < 1.
Par conséquent, la fonction f est dérivable sur ]−1,1[ et pour tout x dans cet intervalle,

f ′(x) = −1

2
p

1−x2
.

9 �

Soit x ∈ [−1,1] tel que arctan(2x) = arccos(x). On a alors

2x = tan(arctan(x) ) = tan(arccos(x) ) = sin(arccos(x) )

cos(arccos(x) )
=

p
1−x2

x

d’où 4x2 = 1−x2, i.e. x =±1/
p

5.

LLG . HX 6 12



2025-2026 Laurent Kaczmarek

La fonction f : x 7→ arctan2x −arccos x est strictement croissante (somme de deux fonctions stric-
tement croissantes) sur [−1,1], continue sur cet intervalle et vérifie f (−1) f (1) < 0 donc l’équation
f (x) = 0 admet une unique solution x0. Comme la fonction arccosinus est à valeurs positives, on a
arctan2x0 ⩾ 0 et donc x0 ⩾ 0 (par les variation de l’arctangente). On en déduit que l’unique solu-
tion est 1/

p
5.

10 �

Posons z = (7+ i )(3+ i )2. Le nombre z est non nul et arg(z) = arg(7+ i )+2arg(3+ i ) [2π]. Comme 7
et 3 sont positifs, on a aussi arg(7+i ) = arctan(1/7)[2π] et arg(3+i ) = arctan(1/3)[2π]. On en déduit
que arg(z) = arctan(1/7)+2arctan(1/3)[2π]. Or, z = (7+ i )(8+6i ) = 50(1+ i ), ainsi arg(z) =π/4[2π].
On a donc montré que

π

4
= arctan

(1

7

)
+2arctan

(1

3

)
[2π]

Par stricte croissance de la fonction arctangente sur R, on déduit des inégalités 0 < 1/7 < 1 et 0 <
1/3 < 1 que

arctan(0) = 0 < arctan(1/3) < arctan(1) = π

4
et arctan(0) = 0 < arctan(1/7) < arctan(1) = π

4

En particulier, 0 < arctan
(

1
7

)
+ 2arctan

(
1
3

)
< 3π

4 · On a donc que les angles π/4 et arctan(1/7) +
2arctan(1/3) appartiennent à [0,3π/4] et sont égaux modulo 2π. Puisque 3π/4 < 2π, on en déduit
qu’ils sont égaux :

π

4
= arctan

(1

7

)
+2arctan

(1

3

)

11 �

1. Soit y ∈ R+. Par le théorème des accroissements finis, il existe c dans [0, y] tel que arctan y =
arctan y −arctan0 = y

c2 +1
· Comme 1

y2+1
⩽ 1

c2+1
⩽ 1, on en déduit que

y

y2 +1
⩽ arctan y ⩽ y

2. La fonction arctangente est définie surR et impaire. On en déduit que f est définie surR∗ et paire
(en tant que produit de deux fonctions impaires).

3. En 0+, 1/x tend vers +∞ et donc arctan(1/x) tend vers π/2. On en déduit que f (x) −−−−→
x→0+ 0.

Soit x > 0. Par le 1., on a
1

1+x−2
⩽ x arctan

(
1

x

)
⩽ 1

On déduit du théorème d’encadrement que f (x) −−−−−→
x→+∞ 1.

4. SurR∗+, la fonction f est dérivable en tant que produit de fonctions dérivables, et

∀x ∈R∗
+, f ′(x) = arctan

(
x−1)− x−1

1+x−2

D’après le 1., cette expression est positive et donc f est croissante surR+. On déduit de l’ensemble
de cette étude le graphe suivant :
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12 �

1. Soit x > 1. On a

arctan
( x

x −1

)
−arctan

(
x +1

x

)
= arg

((
1+ i

x

x −1

)(
1− i

x +1

x

))
[2π]

= arg

(
2x

x −1
+ i

x(x −1)

)
[2π] = arctan

(
1

2x2

)
[2π]

Comme −π< arctan
( x

x−1

)−arctan
( x+1

x

)<π et −π< arctan
(

1
2x2

)
<π, on en déduit que

arctan

(
x +1

x

)
−arctan

( x

x −1

)
= arctan

(
1

2x2

)
2. Soit n ∈N\ {0,1}. On a

un = arctan

(
1

2

)
+

n∑
k=2

(
arctan

(
k

k −1

)
−arctan

(
k +1

k

))
= arctan

(
1

2

)
+arctan2−arctan

(
n +1

n

)
= π

2
−arctan

(
n +1

n

)
D’où un −−−−−→

n→+∞
π

2
− π

4
= π

4
par continuité de l’arctangente en 1.

13 �

Notons f : x 7→ x2 ln |x|, fonction définie sur R∗. Cette fonction est de classe C 1 sur R∗ en tant que
produit de deux fonctions de classe C ∞. Pour tout x ∈R∗, on a

f ′(x) = x2

x
+2x ln|x| = x +2x ln|x|

Par croissance comparée, on a f (x) −−−→
x→0

0 et f ′(x) −−−→
x→0

0. On déduit du théorème de la limite de la

dérivée que f est prolongeable en une fonction de classe C 1 sur R en posant f (0) := 0 (et on a alors
f ′(0) = 0).

14 �

Puisque g ⩾ f et f (x0) = g (x0), la fonction dérivable g − f et admet un minimum global en x0 (qui est
bien intérieur àR). On en déduit que (g − f )′(x0) = 0, d’où f ′(x0) = g ′(x0).
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15 �

On se souvient que tanh = sinh
cosh est définie surR, impaire et vérifie |tanh| < 1.

1. La fonction tanh est dérivable surR en tant que quotient de fonctions dérivables et

tanh′ = cosh2−sinh2

cosh2 = 1− tanh2 > 0

Ainsi, tanh est strictement croissante. On a

tanh(x) = ex −e−x

ex +e−x
= 1−e−2x

1+e−2x
−−−−−→
x→+∞ 1 et, par imparité de tanh , tanh(x) −−−−−→

x→−∞ −1

Ainsi, par le corollaire du théorème des valeurs intermédiaires, tanh réalise une bijection deR sur
l’intervalle ]−1,1[.

2. On applique le théorème de dérivation d’une bijection réciproque. Soit y dans ]−1,1[.

tanh−1 est dérivable en y ⇐⇒ tanh′(tanh−1(y)) ̸= 0

⇐⇒ 1− tanh2(tanh−1(y)) ̸= 0

⇐⇒ 1− y2

Ainsi, tanh−1 et dérivable en y et
(
tanh−1)′ (y) = 1

1− y2
·

16 �

Quitte à considérer − f , on peut supposer f ′(x0) > 0. Par continuité de f ′ en x0, il existe α> 0 tel que
f ′ soit strictement positive sur sur [x0−α, x0+α] : f est donc strictement croissante sur cet intervalle.

17 �

1. La fonction f est dérivable surR et sur cet intervalle ,

f ′(x) = xp
1+x2

.

Ainsi , ∀x ∈R ,
(1+x2) f ′(x) = x f (x).

2. La fonction f est de classe C ∞ d’après le théorème sur les compoosées. En appliquant la formule
de Leibniz , on trouve que la dérivée n +1-ième de

x 7→ x f (x)

est
x 7→ x f (n+1)(x)+ (n +1) f (n)(x)

et que celle de la fonction
x 7→ (x2 +1) f ′(x)

est
x 7→ (x2 +1) f (n+2) +2x(n +1) f (n+1)(x)+n(n +1) f (n)(x)

L’égalité de ces deux dérivées , qui découle de l’égalité des deux fonctions de départ prouvée à la
question précédente , s’écrit encore ,

(1+x2) f (n+2)(x)+ (2n +1)x f (n+1)(x)+ (n2 −1) f (n)(x) = 0.
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18 �

Soit a et x dansR. Appliquons le théorème des accroissements finis entre x et x+a : il existe cx entre
x et x +a tel que f (x +a)− f (x) = a f ′(cx). Comme cx −−−−−→

x→+∞ +∞ (par encadrement), on a f (x +a)−
f (x) −−−−−→

x→+∞ 0 (par composition des limites).

19 �

1. La fonction f est dérivable avec f ′ = exp > 0 etR+ est stable par f car ex −1⩾ 0 pour tout x ∈R+.
Comme f (0) = 0 et f (x) −−−−−→

x→+∞ +∞, on déduit du corollaire du théorème des valeurs intermé-

diaires que f réalise une bijection de R+ dans lui-même. Ainsi f ∈ D. De plus, pour tout x ∈R+,
on a ex = 1+ f (x) d’où x = ln

(
1+ f (x)

)
. On en déduit que f −1 :R+ →R+, y 7→ ln(1+y). Établir que

f : x 7→ ex −1 appartient à D et expliciter f −1.

2. Comme f est strictement croissante, on déduit du corollaire du théorème des valeurs intermé-
diaires que f réalise une bijection de R+ sur

[
f (0), limx→+∞ f (x)

[
. Ainsi, f (0) = 0 et f (x) −−−−−→

x→+∞+∞.

3. Soit (u, v) ∈D2.

La fonction u ◦ v est bien définie car u est définie sur R+ = v(R+). Elle est bijective de R+ sur
R+ en tant que composée de deux bijections de R+ sur R+ et deux fois dérivable en tant que
composée de fonctions deux fois dérivables. De plus, (u◦v)′ = v ′×(u′◦v) > 0 car u′ > 0 et v ′ > 0.
Ainsi u ◦ v ∈D.

Comme u′ > 0 et u deux fois dérivable, la fonction u−1 est deux fois dérivable sur R+ avec(
u−1

)′ = 1
u′◦u−1 > 0 car u′ > 0. De plus, u−1 est bijective deR+ surR+. Ainsi u−1 ∈D.

4. Soit f ∈D. Comme f ′ > 0, la fonction L ( f ) est bien définie et L ( f ) = f ′′
f ′ ·

5. Soit (u, v) ∈D2. On a

L (v ◦u) = (v ◦u)′′

(v ◦u)′
=

(
u′× (

v ′ ◦u
))′

u′× (v ′ ◦u)
= u′′× (

v ′ ◦u
)+ (

u′)2 × (
v ′′ ◦u

)
u′× (v ′ ◦u)

= u′′

u′ +
u′× (

v ′′ ◦u
)

v ′ ◦u
= L (u)+ (L (v)◦u)×u′

6. Comme v−1 ∈D (cf. la question c.) et L (idR+) = 0, on déduit de la question précédente que

0 = L
(
v−1)+ (

L (v)◦ v−1)× (
v−1)′ = L

(
v−1)+ (

L (v)◦ v−1)× 1

v ′ ◦ v−1

d’où L
(
v−1

)=−(
L (v)◦ v−1

)× 1
v ′◦v−1 =− v ′′◦v−1

(v ′◦v−1)2 .

7. On démontre le résultat par récurrence sur k ∈N∗.

Pour k = 1, le résultat est clair car f 0 = idR+ et ( f 0)′ = 1.

Soit k ∈N∗. Supposons la relation vraie au rang k. Par la question précédente, on a
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L
(

f k+1
)
= L

(
f ◦ f k

)
= L

(
f k

)
+

(
L ( f )◦ f k

)
×

(
f k

)′
=

(
k−1∑
i=0

(
L ( f )◦ f i

)
×

(
f i

)′)+ (
L ( f )◦ f k

)
×

(
f k

)′
=

k∑
i=0

(
L ( f )◦ f i

)
×

(
f i

)′
par la relation au rang k. Ainsi la relation est établie au rang k +1.
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