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QQ AN 6 Fonctions dérivables

Le calcul occupe une place importante a égalité avec les applications des théo-
remes globaux (Rolle, accroissements finis). Ce chapitre sera illustré par les fonc-
tions trigonométriques réciproques.

Mains en priére, Albrecht Diirer
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1. Quizz

@@ Vrai ou faux ? f

Une fonction dérivable sur [0, 1] est bornée.
Une fonction dérivable a droite sur R et de dérivée a droite nulle est constante.
La fonction f: x — x|x| est de classe €1 sur R.

Une fonction lipschitzienne sur R est dérivable sur R.

1.
2.
3.
4.
5. Si f’ est positive sur un vrai intervalle I, alors f est croissante sur I.

6. Si f' =0sur Py, alors f est constante sur .

7. Si f est dérivable et strictement croissante, alors f” est strictement positive.

8. Si f’ s’annule en 0, alors f admet un extremum local en 0.

9. Une fonction f: R — R dérivable est paire si et seulement si f’ est impaire.
10. Une fonction f: R — R dérivable est impaire si et seulement si f’ est paire.
11. Pour tout (x,y) € R? , |arctanx —arctany | < |x— y|.

12. Si f: R — R est dérivable et f/(0) >0, alors In>0 Vxe [0,n[ , f(x) > f(0).
13. Pour tout x € [, 7| , arcsin(sinx) = — x.

14. Pour tout x€ [—1,1] , cos(arccos x) = x.

arcsinx
15. Pour tout x € [-1,1[ , arctanx = ——-
arccos x
X
16. L'ensemble de définition de I'expression arcsin( 1) est R;.
Q® QCM sur la dérivation f
1. Soit f: R — R définie par f: x — 2xe*.
a. [ estbijective; c. (f)o=1;
b. f~! est dérivable sur R; d. f~lest€>® surR.

2. Soit f: R4+ — R continue, dérivable sur R}, avec f’ strictement décroissante et f(0) = 0.

! . X
a. Vx>0, f(x) > xf(x); b. x— % est croissante sur R7.

3. Soit up € [0,1] et Vrne N, u,4q = cos(uy) et £ 'unique solution de ¢ = cos¥. Vrai ou faux ?

a. YvneN, u,c[0,1]; c. VnelN, |u, -0 <sin(1)"|uy—2|;

b. (u,)n>0 est monotone; d. u, l.

n—-+oo
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. Vrai ou faux ?

4. Soit f:R — R dérivable telle que 3¢ € R, f'(x)

X—+00
a. {=0= JLeR, f(x) L; d. >0 = f(x) +00;
X—+00 X—+00
b. f(x+1)—f(x)m€; e.f<0=>f(x)m—oo;

c. {#0 = f monotone au vois. de +oo;

0. Vrai ou faux ?

5. Soit f: R4y — R dérivable telle que 3¢ € R, f(x)

X—+00
/ . N
a. f'(x) = 0; b. 3(xn)n=0 € RY,
x +oo et f'(x;,) ——0
n n—+oo f ( n) n—+oo
o® QCM sur les fonctions trigonométriques réciproques
1. Pour tout x € [0,1], 'expression arcsin V1 — x2 est égale a:
a. arcsinx b. arccosx C. TT—arccosx
2. Pour tout x € R, I'expression cos(arctan x) est égale a :
a. 1 b. x2 +1 C. 1
211 x*+1
3. Pour tout x € R, I'expression sin(arctan x) est égale a :
X X
a. |x| b. C. >
x2+1 x*+1 x“+1

4. Pour tout (x, y) € R?, 'expression sinh?(x) cos?(y) + cosh?(x) sin?(y) est égale a :

a. sinh? x +sin®y b. cosh? x—cos?y c. cosh? x +cos?y

2. Exercices élémentaires

n Q® Un classique

Soit f € €2([a, b],R) telle que f'(a) = f(a) et f'(b) = f(b). Montrer que Ic€la, bl, f"(c) = f (o).

On pourra considérer g : x — e* (f'(x) — f(x)).

(0XO Etude d’une suite récurrrente

Etudier la suite définie par up € R, Vn e N, u,.1 = v4+3u, en appliquant I'inégalité des accroisse-
ments finis.

LLG ¥ HX6 3
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a Q® Un raccord en 0
Ax six<0

Soit A € R et f la fonction définie sur R par Vx e R, f(x) = 2 ) 0
— six>
In(1+ x)

Etudier la dérivabilité de f en 0.

Q® Un prolongement classique

1
exp|——| six>0
°(-)

0 six<0

Soit f la fonction définie sur R* par Vx e R*, f(x) =

1. Montrer que f est prolongeable par continuité en 0.

2. Etudier la dérivabilité en 0 de ce prolongement.

a Q® Figures imposées (composées) f

Calculer les dérivées des fonctions définies par les expressions suivantes. On précisera systématique-
ment sur quelle partie de R ces fonctions sont dérivables.

1. f(x) =In(In(x));

2. f(x) =arctan(In(x));

3. f(x) = ln(\/l —2sin2(x)); 6. f(x)= arctan(\/ i;—x)
X

cos(x) + xsin(x) ]
sin(x) — xcos(x)’

5. f(x)= (cosz(x) + g sin(2x);

4. f(x)=

a Q® Une équation f

Résoudre I'équation arctan(2x) = arccos x d'inconnue x € [—1,1].

10 [eXO Une formule f

b 1 1
Montrer que — = arctan (—) + 2arctan (—)
4 7 3

11 [eXO) Ftude d’une fonction f

1
On pose f:x— xarctan(;) .

Y

1. Ftablirque Vye R, —— < arctany < y.
que ¥y € Ry, 5= y<y

2. Déterminer 'ensemble de définition et la parité de f.

LLG ¥ HX6 4
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3. Déterminer les limites de f en 0+ et en +oo. Pour cette derniere, on utilisera I'encadrement de
I’exercice précédent.

4. Dresser le tableau de variation de f puis tracer sa courbe représentative dans un repere ortho-
normeé.

12 [eX Somme d’une série f

1 1
Pour tout n € N*, on pose u;, := Z arctan(W) .
k=1

x+1

X
1. Démontrer que pour tout x > 1, arctan (—1) —arctan
x

X — x2

=)
= arctan|—: |-
2

2. En déduire que la suite (u#,),>1 a une limite réelle que I'on calculera.

13 [XO Un prolongement €' f

Montrer que la fonction x — x%1In|x| est prolongeable en une fonction de classe € Isur R tout entier.

14 [eX Graphes tangents f

Soitxpe Ret(f,g) € €1 (R, R) tels que f(x9) = g(xp) et VxeR, f(x) < g(x).
Montrer que f'(x) = g'(xo).

15 R La fonction argtanh f

1. Montrer que la fonction tanh réalise une bijection de R sur] -1, 1[.

2. Ftablir que tanh™! est dérivable et déterminer sa dérivée.

3. Exercices classiques plus techniques

16 XS Une condition suffisante de monotonie f

Soit f : R — R de classe ¢ et xo € R tel que f’(xo) # 0. Montrer qu'il existe a > 0 tel que f soit
strictement monotone sur [xp — &, Xp + oJ.

17 EXO] Une suite de dérivées ff

Soit f la fonction définie sur Ry par f:x— V1 + x2.

1. Trouver une équation différentielle linéaire d’ordre un vérifiée par f.

LLG ¥ HX6 5
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2. En déduire a I'aide de la formule de Leibniz que pour tout n positif et tout x réel,

(1+x%) fF"? ) +2n+ Dxf" V) + (- 1) fP ) =0

18 Ko} Tangentes et cordes ff

Soit f: R — R dérivable telle que f'(x) 0. Démontrer que, Vae R, f(t+a) — f(t) —— 0.

X—+00 X—+00

19 [eXO) Etude d’un opérateur ff

On note 2 I'’ensemble des fonctions f: R, — R deux fois dérivables, bijectives et telles que f’ > 0.

Pour tout f dans &, on pose Z(f) := (lnof’)'.

1. Etablir que f: x— e* — 1 appartient 2 2 et expliciter f~1.
2. Soit f € 2. Déterminer f(0) et xlir+n f(x).
—T00

3. Justifier que (2, o) est un groupe, i.e. ¥ (u,v) € P2, uoveetulen.

4. Justifier que, pour tout f dans 2, la fonction Z(f) est bien définie et I'exprimer en fonction des
dérivées de f.

5. Soit (i, v) € 2%. Montrer que L (vou) = (L) ou) x u' + L (u).

6. Soit v € 9. Exprimer £ (v™!) en fonction de v”, v/, v

7. Soit f un élément de 2 et k dans IN*. Montrer que
k-1 . \/
z(f*)= 3 [20er)(r]
i=0

o1 f/ désigne la j-éme itérée de f.

LLG ¥ HX6 6
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4. Indications

(1 o

Pour construire des exemples ou des contre-exemples, on pourra utiliser des fonctions usuelles
simples ou des fonctions définies par morceaux.

8-

Au 5.b., on pourra appliquer le TAF a f sur l'intervalle [n, n + 1].

8 -

Au 4., on exploitera les relations cos? +sin? = 1 et cosh? —sinh? = 1.

[ 4 )

Appliquer le théoréme de Rolle a g.

8 -

La dérivée de x — /4 + 3x est bornée en valeur absolue par %-

O -

La fonction f est dérivable en 0 si ef seulement si\ = 1.

(7

La fonction est prolongeable par continuité en 0 par f(0) := 0. Ce prolongement est dérivable en 0 et
f'(0) =0.

B -

Il s’agit de dériver des composées.

B -

Composer par la tangente.

o -

On pourra utiliser les nombres complexes ou la formule d’addition de la tangente.

o -

Au 1., on peut étudier deux fonctions ou bien appliquer le TAE

o -

Le 1. est une invitation au télescopage.

LLG ¥ HX6 7
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o -

Apres prolongelment par continuité en 0, on peut par exemple appliquer le théoreme de la limite de
la dérivée.

o -

Une simple figure nous mene a la conjecture f'(xg) = g’(xo).

o -

On trouve que Vy €] —1,1[ , (tanh™!) () =

o -

Montrer qu'il existe un intervalle de la forme [xg — «, xo + a] sur lequel f’ est positive.

® -

On trouve (1 + x2) f'(x) = xf(x). Appliquer la formule de Leibniz au b).

o -

Appliquer le TAE

(19

Au 1., on trouve f “1.R, - R,, y— In(1 + y). Raisonner par récurrence a la derniére question.

1
1-y?

LLG ¥ HX6 8
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(1 i}

. Vrai. Une fonction dérivable est continue, il suffit d’appliquer le théoréme de Weierstrass.

5. Solutions

. Faux. La partie entiére est un contre-exemple évident.

3. Vrai. Sur R? et R, f est polynomiale donc de classe . Le taux d’accroissement de f en 0 est

© &N @

10.

11.
12.

13.

14.
15.
16.

8-

1.

x € R* — |x| donc tend vers 0 quand x tend vers 0 : f est dérivable en 0 avec f'(0) = 0. De plus, sur
R*, ona f'(x) = 2signe(x)x. La dérivée f’ est donc bien continue en 0.

Faux. La valeur absolue est un contre-exemple évident (elle est 1-lipschitzienne par I'inégalité
triangulaire).

Vrai (cf. cours).

Faux. Mais c’est vrai si 'ensemble de définition de f est un intervalle.

Vrai (cf. cours).

Faux. La fonction f:[0,1] — R définie par f(x) = x est un contre-exemple évident pour a = 1.

Vrai. Uimplication = est évidente (il suffit de dériver membre a membre dans larelation f(—x) =
f(x)). Supposons f’ impaire. La fonction g : x — f(—x) — f(x) est dérivable et sa dérivée est nulle
sur R, elle est donc constante. Comme g(0) =0, g =0.

Faux. Limplication = est vraie (adapter la preuve de la question précédente). La fonction f :
X — x+ 1 est un contre-exemple évident a la réciproque.

Vrai. On applique I'IAF a I'arctangente (sa dérivée est majorée en valeur absolue par 1).

Vrai. On utilise le fait qu'une fonction ayant une limite non nulle ¢ en un point a de R est du signe
de ¢ au voisinage de a. Il existe n > 0 tel que le taux d’accroissement de f en 0 soit positif sur
] —1,n[\{0}. En particulier, pour x €]0,n[, on a

f(x)—f(O)>

X

0

d’ou f(x) > f(0).

Vrai car
sin(m—x) =sin(x) et —n/2<nm—x< /2

pour x € [1/2,7].
Vrai, c’est une conséquence immeédiate de la définition de I’arccosinus.
Faux. Cex x = —1.

Faux. L'expression est définie si set seulement si |x| < |[x + 1|. On trouve [-1/2, +o0].

Seuls a., b. et d. sont vrais. La fonction f est de classe € sur R et f’ > 0 par un calcul facile.
Comme f(x) +00, elle est bijective (corollaire du TVI). Comme f’ ne s’annule pas, f! a

X—*00
la méme classe que f (cf. le cours). Comme f'(0) =2 et f(0) =0, on a (f_l)/ = 1/2 (théoréme de
dérivation d’une bijection réciproque).

LLG ¥ HX6 9
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2.

@

Seul a. est vrai. Soit x € R}. Par le TAF il existe cx €]0, x[ tel que f(x) = f(x) — f(0) = xf'(cy). On
conclut en remarquant que f’(cy) > f'(x) par croissance de f’. Cette inégalité permet de trouver
le signe de la dérivée de x — f(x)/x et de prouver que le b. est faux.

Tout est vrai saufle b. Lintervalle [0, 1] est stable par le cosinus d’ou1 le a. On vérifie que la fonction
X — cos(x) — x s’annule en un unique point ¢ de [0, 1] (simple étude de ses variations). Sur [0, 1],
cos’(x) = —sin(x) est majoré en valeur absolue par sin(1). On déduit de I'TAF que | f(x) — f(€) | <
sin(l)[x—¢|douVneNN, |u,+1 — €| <sin(1)|u, — €| puis le c. par une récurrence facile. On déduit
le d. du c. par le théoréme d’encadrement;

Tout est vrai saufle a.

= Lafonction x — v x? + 1 est un contre-exemple au a.

= Au b, il existe ¢, entre x et x +1 tel que f(x+1) — f(x) = f'(cyx). Comme cy +00, on

X—+00
conclut par composition des limites.

=> Le c. est vrai carsi £ # 0, alors f’ est du signe de ¢ au voisinage de +oo.

= Supposons que f'(x) — € e R Tl existe xp > 0 tel que Vx < xp, f'(x) > €/2. Soit x > xg. Par
—+00
I'TAF entre xp et x, on a f(x) = f(xp) + (x — x0)€/2. Ainsi f(x)

+00 (par encadrement).
X—+00

= Le e. est vrai par applicationdud. a —f.
Seule le b. est vrai.

sin (x?)
vVx+1

= Soit n € IN. Il existe ¢, dans [n,n+ 1] tel que f(n+1) — f(n) = f'(cy). On a bien ¢, — +oo et
fllecn)=f(n+1) - f(n) 0.

= Lafonction x — est un contre-exemple au a.

n—+oo

Enseignements a tirer de cet exercice

= Le 1. est une simple application du théoréme de dérivabilité d'une bijection réciproque.

= Au 2., comparer f(x) et xf’(x) doit faire songer immédiatement au TAF ou I'TAE

= Au 3., c’est une breve étude graphique qui permet d’entrevoir la solution donnée ci-dessus : le

point fixe ¢ est attracteur, on utilise I'TAE

= Le 7.a. est une erreur classique, on y prendra garde. On notera que si f est dérivable et décroit

(3

1.

2.
3.
4.

vers une limite réelle £ en +oo, on peut toujours pas en déduire que f’(x) e 0 mais il est plus
—T00
long de construire un contre-exemple (cf. un des exercices de DL sur la dérivation).

Le b. Remarquer que « := arcsin vV 1 — x? vérifie sina = sinarccos x. Comme « et arccos x appar-
tiennent a [0, 71/2], on conclut par stricte croissance du sinus sur cet intervalle.

Le a. Exploiter la relation 1 + tan? = cos 2.
Le b. Remarquer que sin = tan x cos et utiliser la question précédente.

Les a. et b. Utiliser cos? +sin? = 1 et cosh? —sinh? = 1.

LLG € HX6 10
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a-

11 suffit d’appliquer le théoréme de Rolle a g en remarquant que Vx € [a, b, g'(x) = e*(f"(x) — f(x)).

8 -

On commence par une figure.

A

Comme, |f’| semble majoré par un réel stric-
tement inférieur a 1 sur I'intervalle R, stable
par f, on va essayer d’appliquer I'TAE Notons
I =R, et f 'application de I dans R définie par
X — V4 +3x. La suite est bien définie des que
up = 0 puisquel'ona f(I) cL.

Un réel x est point fixe de f si et seulement si x > 0 et x%2 =4 +3x, ie x = 4. La seule (et éventuelle!)

.. . 4. . I _ 3 3
limite de (u,) est donc 4. La fonction f est dérivable sur I et sur cet intervalle, f'(x) = PN/ET <7

Par'TAE Vx,yel, |f(x) - f(nI < ?—llx—yl. Donc, pour tout n > 0, puisque u,+1 = f(u,) et f(4) =4,
U —4 < %I U, —4| et par une récurrence immédiate, Vn e IN, |u, — 4| < (%)n |up —4| Ainsi, d’apres le
théoreme d’encadrement, u,, —— 4.

n—+oo
Q-

Comme x — Ax est dérivable sur R, f est dérivable a gauche en 0 avec fé(O) = A. De plus,

fX)-f0)  x Jott f(x) = f(0)

X " In(1+x) 0+ X x—0+

1

Ainsi f est dérivable a droite en 0 et f 6; (0) = 1. La fonction f est donc dérivable en 0 si et seulement
SiA=1.

8-

1. On a clairement f(x)

0et f(x)

x—0- x—0+
pas définie en 0, f(x) g 0. Ainsi f est prolongeable par continuité en 0 en posant f(0) = 0.
x—>

0 (par composition des limites) donc, puisque f n’est

2. Pourxe R*,ona
fO-f0) {0 six<0

x six>0%exp(-1)

Comme ue™“ " 0 par croissances comparées, on a par composition des limites que
Uu—+0oo
fx)—-f(0) 0
X x—0+
Puisque M ——0,0na w —— 0. Ainsi f est dérivable en 0 et f’(0) = 0.

x—0— x—0

LLG € HX6 11
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B -

Convenons de dire qu'une fonction est dérivable (sans plus de précision) pour signifier qu’elle est
dérivable sur son ensemble de définition.

1. La fonction In (la deuxieme) est dérivable sur R et (la premiére) strictement positive sur 1, +ool,
donc Inoln est dérivable sur |1, +oo[ et

, 1
Vx>1, (noln)(x)=———
xIn(x)
2. La fonction arctan est dérivable sur R et In est dérivable sur R}, donc arctanoln est dérivable
sur R} et
1

Vx>0, (arctanoln)’(x) = ————
x(1+1n°(x))

3. La fonction sin? est périodique, de période 7. La fonction /- est dérivable et strictement positive
sur R*, donc la fonction f est (définie et) dérivable au point x si, et seulement si, 1 —2sin? x > 0,
c’est-a-dire si x est strictement compris entre —n/4 et /4 (modulo 7). Pour de tels x,

—2sin(x) cos(x)
— = —tan(2x)
1-—2sin“(x)

flx) =

On peut faciliter le calcul de la dérivée en remarquant que

1
Iny/1 —2sin?(x) = Elnlcos(Zx)I

pour tout x # n/4 (mod m/2).

4. La fonction f est définie et dérivable en tout point x tel que sin(x) # xcos(x). Cette équation
possede une infinité de solutions, une dans chaque intervalle de la forme |—-n/2 + kn, /2 + kn|
(avec k € Z)). En tout point de son ensemble de définition,

—X

=

(sin(x) — xcos(x))?
5. Lafonction f est dérivable sur R et, pour tout x € R,
f'(x) = —sin®(2)x + (1 + cos(2x)) cos(2x) + 3 cos(2x) = cos(4x) + 4 cos(2x)

6. Untableau de signes montre que (1-x)/(1+x) est strictement positif si, et seulement si, -1 < x < 1.
Par conséquent, la fonction f est dérivable sur |—1, 1[ et pour tout x dans cet intervalle,
-1

"(x) = ——.
! 2v1—x2

B -

= Soit x € [-1,1] tel que arctan(2x) = arccos(x). On a alors

sin(arccos(x))  V1-—x?
cos (arccos(x)) B X

2x =tan(arctan(x)) = tan(arccos(x)) =
dot14x®=1-x2ie x=+1/v5.

LLG € HX6 12
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= La fonction f: x — arctan2x — arccos x est strictement croissante (somme de deux fonctions stric-
tement croissantes) sur [—1, 1], continue sur cet intervalle et vérifie f(—1) f(1) < 0 donc I'’équation
f(x) =0 admet une unique solution xy. Comme la fonction arccosinus est a valeurs positives, on a
arctan2xp > 0 et donc xo > 0 (par les variation de I'arctangente). On en déduit que 'unique solu-
tion est 1/v/5.

o -

= Posons z = (7 +i)(3 + i)%. Le nombre z est non nul et arg(z) = arg(7+1)+2arg(3+1i) [2n]. Comme 7
et 3 sont positifs, on a aussi arg(7+i) = arctan(1/7) [2n] et arg(3+i) = arctan(1/3) [2n]. On en déduit
que arg(z) = arctan(1/7) +2arctan(1/3) [27]. Or, z = (7+i)(8+6i) =50(1 + i), ainsi arg(z) = m/4 [27].
On a donc montré que

T 1 1
— = arctan (—) + 2arctan (—) [27]
4 7 3

= Par stricte croissance de la fonction arctangente sur R, on déduit des inégalités 0 <1/7 <1 et0 <
1/3<1que

b1 T
arctan(0) =0 < arctan(1/3) < arctan(l) = Z et arctan(0) =0 < arctan(1/7) < arctan(l) = Z

En particulier, 0 < arctan(%) + 2arctan(%) < %‘- On a donc que les angles n/4 et arctan(1/7) +

2arctan(1/3) appartiennent a [0, 37/4] et sont égaux modulo 2. Puisque 31/4 < 27w, on en déduit
qu’ils sont égaux :
T 1 1
— = arctan (—) + 2arctan (—)
4 7 3

o -

1. Soit y € R.. Par le théoreme des accroissements finis, il existe ¢ dans [0, y] tel que arctany =

21 Comme y21+1 < ﬁ < 1, on en déduit que

arctan y —arctan0 =

——— < arctany <
y2+1 ysJ

2. Lafonction arctangente est définie sur R et impaire. On en déduit que f est définie sur R* et paire
(en tant que produit de deux fonctions impaires).

0.

3. = En 0+, 1/x tend vers +oo et donc arctan(1/x) tend vers /2. On en déduit que f(x) 5
x—0+

= Soitx>0.Parlel.,,ona
1

1+x72
On déduit du théoreme d’encadrement que f(x)

1
< xarctan(—) <1
X

1.

X—+00
4. Sur R}, la fonction f est dérivable en tant que produit de fonctions dérivables, et

x—l

14+ x72

VxeR:, f'(x) =arctan(x ') -

D’apresle 1., cette expression est positive et donc f est croissante sur R . On déduit de '’ensemble
de cette étude le graphe suivant :
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o -

1. Soitx>1.0na

X x+1
arctan (—) —arctan| ——
1 X

(2x+ : )[21 t(l)m]
=ar 1] = arctan | — | [21
8 x—-1 x(x-1) 2x2
Comme —7 < arctan (%) - arctan(x—;'l) < T et —T < arctan (#) <7, on en déduit que
x+1 X 1
arctan| —— —arctan(—) = arctan|—;
X -1 2x2

2. SoitneIN\{0,1}.0Ona

u —arctan(1)+i(arctan( k ) arctan(k+1
" 2) & k-1 k

1 n+1 T n+1
= arctan|— |+ arctan2 — arctan| ——| = — —arctan| ——
2 n 2 n

T MW e
> 1"1 par continuité de '’arctangente en 1.

Notons f: x — x%1n|x|, fonction définie sur R*. Cette fonction est de classe €' sur R* en tant que
produit de deux fonctions de classe €. Pour tout x € R*, on a

2
X
f'(x) = — +2xIn|x| = x+2xIn|x|
X
Par croissance comparée, on a f(x) 0 0et f'(x) g 0. On déduit du théoreme de la limite de la
X— X—

dérivée que f est prolongeable en une fonction de classe 6! sur R en posant f(0) := 0 (et on a alors

£(0) =0).

o -

Puisque g > f et f(xo) = g(xp), la fonction dérivable g — f et admet un minimum global en x; (qui est
bien intérieur a R). On en déduit que (g — f)'(xp) =0, d’otr f'(xp) = g’ (x0).
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o -

On se souvient que tanh = % est définie sur R, impaire et vérifie [tanh| < 1.
1. La fonction tanh est dérivable sur R en tant que quotient de fonctions dérivables et

Laurent Kaczmarek

cosh? — sinh?

tanh’ = ——— = 1 —tanh?®>0
cosh
Ainsi, tanh est strictement croissante. On a
ef—e X 1-¢ %
tanh(x) = = 1 et, parimparité de tanh , tanh(x) -1
eX+e X 1+e 2% x—+oo xX——00

Ainsi, par le corollaire du théoreme des valeurs intermédiaires, tanh réalise une bijection de R sur
I'intervalle] -1, 1].

2. On applique le théoréme de dérivation d'une bijection réciproque. Soit y dans ] -1, 1].
tanh ™! est dérivable en y < tanh’(tanh™'(y)) #0
< 1-tanh®(tanh™ () #0

= 1-y*

Ainsi, tanh™! et dérivable en y et (tanh‘l)' (y) =

o -

Quitte a considérer — f, on peut supposer f’(xp) > 0. Par continuité de f’ en xy, il existe a > 0 tel que
f' soit strictement positive sur sur [xy)—a, xo + af : f est donc strictement croissante sur cet intervalle.

o -

1. La fonction f est dérivable sur R et sur cet intervalle,

f(x) =

1—y2'

X
Vitx?
Ainsi,VxeR,
1 +x%) f'(x0) = xf(x).
2. Lafonction f est de classe € d’apres le théoreme sur les compoosées. En appliquant la formule
de Leibniz, on trouve que la dérivée n + 1-iéme de
x— xf(x)
est
x = xf" V() + (n+ 1) 7 (x)
et que celle de la fonction
x— (X2 +1)f (%)
est
x— (F+ D p2x(n+ D0 +nn+ 1) ()
L'égalité de ces deux dérivées , qui découle de I'égalité des deux fonctions de départ prouvée a la
question précédente , s’écrit encore,

A+x) "D+ 2n+Dx " V) + 2 -1 %) = 0.
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Soit a et x dans R. Appliquons le théoréme des accroissements finis entre x et x+a : il existe c, entre
xetx+atelque f(x+a)— f(x)=af'(cy). Comme cy +00 (par encadrement), on a f(x+ a) —
X—

fx)

0 (par composition des limites).
X—+00

o -

1. Lafonction f est dérivable avec f’ = exp > 0 et R est stable par f car e*—1 > 0 pour tout x € R .
Comme f(0) =0 et f(x) — too, on déduit du corollaire du théoreme des valeurs intermé-
X—+00

diaires que f réalise une bijection de R, dans lui-méme. Ainsi f € 2. De plus, pour tout x € R,
onae*=1+f(x)doux=1In(1+ f(x)). Onen déduitque f~1: Ry — R4, y— In(1+y). Etablir que
f:x— e*—1appartient 2 2 et expliciter f!.

2. Comme f est strictement croissante, on déduit du corollaire du théoréme des valeurs intermé-
diaires que f réalise une bijection de R sur [f(0),limy_. o f(x)[. Ainsi, £(0) =0 et f(x)
+00.

3. Soit (i, v) € 2°.

= La fonction uo v est bien définie car u est définie sur R, = v(IR). Elle est bijective de R sur
R+ en tant que composée de deux bijections de R sur R, et deux fois dérivable en tant que
composée de fonctions deux fois dérivables. De plus, (uov)' = v/ x (u'ov) >0car u’ >0et v’ > 0.
Ainsi uove 9.

X—+00

= Comme u' > 0 et u deux fois dérivable, la fonction u~! est deux fois dérivable sur R, avec

(u™!) = -+ >0 car &/ > 0. De plus, u~! est bijective de R, sur R.. Ainsi u™' € 2.
uou1

4. Soit f € 2. Comme [’ > 0, la fonction Z(f) est bien définie et £ (f) = le,/

5. Soit (1, v) € 2%2.Ona

Pwou) = (vou)” _ (u % (v’ou))’ _ u’" x (v ou) +(u’)2 x (v"ou)
(vou) u' x(v'ou) u' x (v'ou)
u// u’X (U”OM) )
= —+—F— =L+ (&L Wou)xu
u v'iou

6. Comme v~ € 9D (cf. la question c.) et Z(idg,) = 0, on déduit de la question précédente que

1
V' o U—l

/

0=2(v )+ (Zwov )x(v ) =L v )+ (LWov)x

1

dou & (U_l) =— (g(v) o v—l) x 1 c=— v'ov~

vov~ (y’oy*l)z'
7. On démontre le résultat par récurrence sur k € IN*.
= Pour k = 1, le résultat est clair car f° =idR, et (f9)'=1.

= Soit k € IN*. Supposons la relation vraie au rang k. Par la question précédente, on a
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2(1) = 2(ro ") = 2 (8]« [2pe ) (1]

/_\

-5 (wprer) (1)

par la relation au rang k. Ainsi la relation est établie au rang k + 1.

LLG ¥ HX6

kf(ﬁf(f) o f') x (f)) (2o rt)< ()
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